|  | //--------------------------------------------------------------------------------- | 
|  | // | 
|  | //  Little Color Management System | 
|  | //  Copyright (c) 1998-2020 Marti Maria Saguer | 
|  | // | 
|  | // Permission is hereby granted, free of charge, to any person obtaining | 
|  | // a copy of this software and associated documentation files (the "Software"), | 
|  | // to deal in the Software without restriction, including without limitation | 
|  | // the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
|  | // and/or sell copies of the Software, and to permit persons to whom the Software | 
|  | // is furnished to do so, subject to the following conditions: | 
|  | // | 
|  | // The above copyright notice and this permission notice shall be included in | 
|  | // all copies or substantial portions of the Software. | 
|  | // | 
|  | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO | 
|  | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | 
|  | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | 
|  | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | 
|  | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | 
|  | // | 
|  | //--------------------------------------------------------------------------------- | 
|  | // | 
|  |  | 
|  | #include "lcms2_internal.h" | 
|  |  | 
|  |  | 
|  | // D50 - Widely used | 
|  | const cmsCIEXYZ* CMSEXPORT cmsD50_XYZ(void) | 
|  | { | 
|  | static cmsCIEXYZ D50XYZ = {cmsD50X, cmsD50Y, cmsD50Z}; | 
|  |  | 
|  | return &D50XYZ; | 
|  | } | 
|  |  | 
|  | const cmsCIExyY* CMSEXPORT cmsD50_xyY(void) | 
|  | { | 
|  | static cmsCIExyY D50xyY; | 
|  |  | 
|  | cmsXYZ2xyY(&D50xyY, cmsD50_XYZ()); | 
|  |  | 
|  | return &D50xyY; | 
|  | } | 
|  |  | 
|  | // Obtains WhitePoint from Temperature | 
|  | cmsBool  CMSEXPORT cmsWhitePointFromTemp(cmsCIExyY* WhitePoint, cmsFloat64Number TempK) | 
|  | { | 
|  | cmsFloat64Number x, y; | 
|  | cmsFloat64Number T, T2, T3; | 
|  | // cmsFloat64Number M1, M2; | 
|  |  | 
|  | _cmsAssert(WhitePoint != NULL); | 
|  |  | 
|  | T = TempK; | 
|  | T2 = T*T;            // Square | 
|  | T3 = T2*T;           // Cube | 
|  |  | 
|  | // For correlated color temperature (T) between 4000K and 7000K: | 
|  |  | 
|  | if (T >= 4000. && T <= 7000.) | 
|  | { | 
|  | x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063; | 
|  | } | 
|  | else | 
|  | // or for correlated color temperature (T) between 7000K and 25000K: | 
|  |  | 
|  | if (T > 7000.0 && T <= 25000.0) | 
|  | { | 
|  | x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040; | 
|  | } | 
|  | else { | 
|  | cmsSignalError(0, cmsERROR_RANGE, "cmsWhitePointFromTemp: invalid temp"); | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | // Obtain y(x) | 
|  | y = -3.000*(x*x) + 2.870*x - 0.275; | 
|  |  | 
|  | // wave factors (not used, but here for futures extensions) | 
|  |  | 
|  | // M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y); | 
|  | // M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y); | 
|  |  | 
|  | WhitePoint -> x = x; | 
|  | WhitePoint -> y = y; | 
|  | WhitePoint -> Y = 1.0; | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | typedef struct { | 
|  |  | 
|  | cmsFloat64Number mirek;  // temp (in microreciprocal kelvin) | 
|  | cmsFloat64Number ut;     // u coord of intersection w/ blackbody locus | 
|  | cmsFloat64Number vt;     // v coord of intersection w/ blackbody locus | 
|  | cmsFloat64Number tt;     // slope of ISOTEMPERATURE. line | 
|  |  | 
|  | } ISOTEMPERATURE; | 
|  |  | 
|  | static const ISOTEMPERATURE isotempdata[] = { | 
|  | //  {Mirek, Ut,       Vt,      Tt      } | 
|  | {0,     0.18006,  0.26352,  -0.24341}, | 
|  | {10,    0.18066,  0.26589,  -0.25479}, | 
|  | {20,    0.18133,  0.26846,  -0.26876}, | 
|  | {30,    0.18208,  0.27119,  -0.28539}, | 
|  | {40,    0.18293,  0.27407,  -0.30470}, | 
|  | {50,    0.18388,  0.27709,  -0.32675}, | 
|  | {60,    0.18494,  0.28021,  -0.35156}, | 
|  | {70,    0.18611,  0.28342,  -0.37915}, | 
|  | {80,    0.18740,  0.28668,  -0.40955}, | 
|  | {90,    0.18880,  0.28997,  -0.44278}, | 
|  | {100,   0.19032,  0.29326,  -0.47888}, | 
|  | {125,   0.19462,  0.30141,  -0.58204}, | 
|  | {150,   0.19962,  0.30921,  -0.70471}, | 
|  | {175,   0.20525,  0.31647,  -0.84901}, | 
|  | {200,   0.21142,  0.32312,  -1.0182 }, | 
|  | {225,   0.21807,  0.32909,  -1.2168 }, | 
|  | {250,   0.22511,  0.33439,  -1.4512 }, | 
|  | {275,   0.23247,  0.33904,  -1.7298 }, | 
|  | {300,   0.24010,  0.34308,  -2.0637 }, | 
|  | {325,   0.24702,  0.34655,  -2.4681 }, | 
|  | {350,   0.25591,  0.34951,  -2.9641 }, | 
|  | {375,   0.26400,  0.35200,  -3.5814 }, | 
|  | {400,   0.27218,  0.35407,  -4.3633 }, | 
|  | {425,   0.28039,  0.35577,  -5.3762 }, | 
|  | {450,   0.28863,  0.35714,  -6.7262 }, | 
|  | {475,   0.29685,  0.35823,  -8.5955 }, | 
|  | {500,   0.30505,  0.35907,  -11.324 }, | 
|  | {525,   0.31320,  0.35968,  -15.628 }, | 
|  | {550,   0.32129,  0.36011,  -23.325 }, | 
|  | {575,   0.32931,  0.36038,  -40.770 }, | 
|  | {600,   0.33724,  0.36051,  -116.45  } | 
|  | }; | 
|  |  | 
|  | #define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE) | 
|  |  | 
|  |  | 
|  | // Robertson's method | 
|  | cmsBool  CMSEXPORT cmsTempFromWhitePoint(cmsFloat64Number* TempK, const cmsCIExyY* WhitePoint) | 
|  | { | 
|  | cmsUInt32Number j; | 
|  | cmsFloat64Number us,vs; | 
|  | cmsFloat64Number uj,vj,tj,di,dj,mi,mj; | 
|  | cmsFloat64Number xs, ys; | 
|  |  | 
|  | _cmsAssert(WhitePoint != NULL); | 
|  | _cmsAssert(TempK != NULL); | 
|  |  | 
|  | di = mi = 0; | 
|  | xs = WhitePoint -> x; | 
|  | ys = WhitePoint -> y; | 
|  |  | 
|  | // convert (x,y) to CIE 1960 (u,WhitePoint) | 
|  |  | 
|  | us = (2*xs) / (-xs + 6*ys + 1.5); | 
|  | vs = (3*ys) / (-xs + 6*ys + 1.5); | 
|  |  | 
|  |  | 
|  | for (j=0; j < NISO; j++) { | 
|  |  | 
|  | uj = isotempdata[j].ut; | 
|  | vj = isotempdata[j].vt; | 
|  | tj = isotempdata[j].tt; | 
|  | mj = isotempdata[j].mirek; | 
|  |  | 
|  | dj = ((vs - vj) - tj * (us - uj)) / sqrt(1.0 + tj * tj); | 
|  |  | 
|  | if ((j != 0) && (di/dj < 0.0)) { | 
|  |  | 
|  | // Found a match | 
|  | *TempK = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi)); | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | di = dj; | 
|  | mi = mj; | 
|  | } | 
|  |  | 
|  | // Not found | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Compute chromatic adaptation matrix using Chad as cone matrix | 
|  |  | 
|  | static | 
|  | cmsBool ComputeChromaticAdaptation(cmsMAT3* Conversion, | 
|  | const cmsCIEXYZ* SourceWhitePoint, | 
|  | const cmsCIEXYZ* DestWhitePoint, | 
|  | const cmsMAT3* Chad) | 
|  |  | 
|  | { | 
|  |  | 
|  | cmsMAT3 Chad_Inv; | 
|  | cmsVEC3 ConeSourceXYZ, ConeSourceRGB; | 
|  | cmsVEC3 ConeDestXYZ, ConeDestRGB; | 
|  | cmsMAT3 Cone, Tmp; | 
|  |  | 
|  |  | 
|  | Tmp = *Chad; | 
|  | if (!_cmsMAT3inverse(&Tmp, &Chad_Inv)) return FALSE; | 
|  |  | 
|  | _cmsVEC3init(&ConeSourceXYZ, SourceWhitePoint -> X, | 
|  | SourceWhitePoint -> Y, | 
|  | SourceWhitePoint -> Z); | 
|  |  | 
|  | _cmsVEC3init(&ConeDestXYZ,   DestWhitePoint -> X, | 
|  | DestWhitePoint -> Y, | 
|  | DestWhitePoint -> Z); | 
|  |  | 
|  | _cmsMAT3eval(&ConeSourceRGB, Chad, &ConeSourceXYZ); | 
|  | _cmsMAT3eval(&ConeDestRGB,   Chad, &ConeDestXYZ); | 
|  |  | 
|  | // Build matrix | 
|  | _cmsVEC3init(&Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0],    0.0,  0.0); | 
|  | _cmsVEC3init(&Cone.v[1], 0.0,   ConeDestRGB.n[1]/ConeSourceRGB.n[1],   0.0); | 
|  | _cmsVEC3init(&Cone.v[2], 0.0,   0.0,   ConeDestRGB.n[2]/ConeSourceRGB.n[2]); | 
|  |  | 
|  |  | 
|  | // Normalize | 
|  | _cmsMAT3per(&Tmp, &Cone, Chad); | 
|  | _cmsMAT3per(Conversion, &Chad_Inv, &Tmp); | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | // Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll | 
|  | // The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed | 
|  | cmsBool  _cmsAdaptationMatrix(cmsMAT3* r, const cmsMAT3* ConeMatrix, const cmsCIEXYZ* FromIll, const cmsCIEXYZ* ToIll) | 
|  | { | 
|  | cmsMAT3 LamRigg   = {{ // Bradford matrix | 
|  | {{  0.8951,  0.2664, -0.1614 }}, | 
|  | {{ -0.7502,  1.7135,  0.0367 }}, | 
|  | {{  0.0389, -0.0685,  1.0296 }} | 
|  | }}; | 
|  |  | 
|  | if (ConeMatrix == NULL) | 
|  | ConeMatrix = &LamRigg; | 
|  |  | 
|  | return ComputeChromaticAdaptation(r, FromIll, ToIll, ConeMatrix); | 
|  | } | 
|  |  | 
|  | // Same as anterior, but assuming D50 destination. White point is given in xyY | 
|  | static | 
|  | cmsBool _cmsAdaptMatrixToD50(cmsMAT3* r, const cmsCIExyY* SourceWhitePt) | 
|  | { | 
|  | cmsCIEXYZ Dn; | 
|  | cmsMAT3 Bradford; | 
|  | cmsMAT3 Tmp; | 
|  |  | 
|  | cmsxyY2XYZ(&Dn, SourceWhitePt); | 
|  |  | 
|  | if (!_cmsAdaptationMatrix(&Bradford, NULL, &Dn, cmsD50_XYZ())) return FALSE; | 
|  |  | 
|  | Tmp = *r; | 
|  | _cmsMAT3per(r, &Bradford, &Tmp); | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | // Build a White point, primary chromas transfer matrix from RGB to CIE XYZ | 
|  | // This is just an approximation, I am not handling all the non-linear | 
|  | // aspects of the RGB to XYZ process, and assumming that the gamma correction | 
|  | // has transitive property in the transformation chain. | 
|  | // | 
|  | // the alghoritm: | 
|  | // | 
|  | //            - First I build the absolute conversion matrix using | 
|  | //              primaries in XYZ. This matrix is next inverted | 
|  | //            - Then I eval the source white point across this matrix | 
|  | //              obtaining the coeficients of the transformation | 
|  | //            - Then, I apply these coeficients to the original matrix | 
|  | // | 
|  | cmsBool _cmsBuildRGB2XYZtransferMatrix(cmsMAT3* r, const cmsCIExyY* WhitePt, const cmsCIExyYTRIPLE* Primrs) | 
|  | { | 
|  | cmsVEC3 WhitePoint, Coef; | 
|  | cmsMAT3 Result, Primaries; | 
|  | cmsFloat64Number xn, yn; | 
|  | cmsFloat64Number xr, yr; | 
|  | cmsFloat64Number xg, yg; | 
|  | cmsFloat64Number xb, yb; | 
|  |  | 
|  | xn = WhitePt -> x; | 
|  | yn = WhitePt -> y; | 
|  | xr = Primrs -> Red.x; | 
|  | yr = Primrs -> Red.y; | 
|  | xg = Primrs -> Green.x; | 
|  | yg = Primrs -> Green.y; | 
|  | xb = Primrs -> Blue.x; | 
|  | yb = Primrs -> Blue.y; | 
|  |  | 
|  | // Build Primaries matrix | 
|  | _cmsVEC3init(&Primaries.v[0], xr,        xg,         xb); | 
|  | _cmsVEC3init(&Primaries.v[1], yr,        yg,         yb); | 
|  | _cmsVEC3init(&Primaries.v[2], (1-xr-yr), (1-xg-yg),  (1-xb-yb)); | 
|  |  | 
|  |  | 
|  | // Result = Primaries ^ (-1) inverse matrix | 
|  | if (!_cmsMAT3inverse(&Primaries, &Result)) | 
|  | return FALSE; | 
|  |  | 
|  |  | 
|  | _cmsVEC3init(&WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn); | 
|  |  | 
|  | // Across inverse primaries ... | 
|  | _cmsMAT3eval(&Coef, &Result, &WhitePoint); | 
|  |  | 
|  | // Give us the Coefs, then I build transformation matrix | 
|  | _cmsVEC3init(&r -> v[0], Coef.n[VX]*xr,          Coef.n[VY]*xg,          Coef.n[VZ]*xb); | 
|  | _cmsVEC3init(&r -> v[1], Coef.n[VX]*yr,          Coef.n[VY]*yg,          Coef.n[VZ]*yb); | 
|  | _cmsVEC3init(&r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb)); | 
|  |  | 
|  |  | 
|  | return _cmsAdaptMatrixToD50(r, WhitePt); | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | // Adapts a color to a given illuminant. Original color is expected to have | 
|  | // a SourceWhitePt white point. | 
|  | cmsBool CMSEXPORT cmsAdaptToIlluminant(cmsCIEXYZ* Result, | 
|  | const cmsCIEXYZ* SourceWhitePt, | 
|  | const cmsCIEXYZ* Illuminant, | 
|  | const cmsCIEXYZ* Value) | 
|  | { | 
|  | cmsMAT3 Bradford; | 
|  | cmsVEC3 In, Out; | 
|  |  | 
|  | _cmsAssert(Result != NULL); | 
|  | _cmsAssert(SourceWhitePt != NULL); | 
|  | _cmsAssert(Illuminant != NULL); | 
|  | _cmsAssert(Value != NULL); | 
|  |  | 
|  | if (!_cmsAdaptationMatrix(&Bradford, NULL, SourceWhitePt, Illuminant)) return FALSE; | 
|  |  | 
|  | _cmsVEC3init(&In, Value -> X, Value -> Y, Value -> Z); | 
|  | _cmsMAT3eval(&Out, &Bradford, &In); | 
|  |  | 
|  | Result -> X = Out.n[0]; | 
|  | Result -> Y = Out.n[1]; | 
|  | Result -> Z = Out.n[2]; | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  |