blob: b6977748bbac2ab006f440ff73cd02540d601259 [file] [log] [blame] [edit]
// Copyright 2016 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fxge/cfx_renderdevice.h"
#include <algorithm>
#include <memory>
#include <utility>
#include "build/build_config.h"
#include "core/fxcrt/fx_safe_types.h"
#include "core/fxge/cfx_color.h"
#include "core/fxge/cfx_defaultrenderdevice.h"
#include "core/fxge/cfx_fillrenderoptions.h"
#include "core/fxge/cfx_font.h"
#include "core/fxge/cfx_fontmgr.h"
#include "core/fxge/cfx_gemodule.h"
#include "core/fxge/cfx_glyphbitmap.h"
#include "core/fxge/cfx_glyphcache.h"
#include "core/fxge/cfx_graphstatedata.h"
#include "core/fxge/cfx_pathdata.h"
#include "core/fxge/cfx_textrenderoptions.h"
#include "core/fxge/dib/cfx_dibitmap.h"
#include "core/fxge/dib/cfx_imagerenderer.h"
#include "core/fxge/fx_font.h"
#include "core/fxge/renderdevicedriver_iface.h"
#include "core/fxge/text_char_pos.h"
#include "core/fxge/text_glyph_pos.h"
#include "third_party/base/check.h"
#include "third_party/base/check_op.h"
#include "third_party/base/notreached.h"
#include "third_party/base/span.h"
#if defined(_SKIA_SUPPORT_) || defined(_SKIA_SUPPORT_PATHS_)
#include "third_party/skia/include/core/SkTypes.h" // nogncheck
#endif
namespace {
void AdjustGlyphSpace(std::vector<TextGlyphPos>* pGlyphAndPos) {
DCHECK(pGlyphAndPos->size() > 1);
std::vector<TextGlyphPos>& glyphs = *pGlyphAndPos;
bool bVertical = glyphs.back().m_Origin.x == glyphs.front().m_Origin.x;
if (!bVertical && (glyphs.back().m_Origin.y != glyphs.front().m_Origin.y))
return;
for (size_t i = glyphs.size() - 1; i > 1; --i) {
const TextGlyphPos& next = glyphs[i];
int next_origin = bVertical ? next.m_Origin.y : next.m_Origin.x;
float next_origin_f =
bVertical ? next.m_fDeviceOrigin.y : next.m_fDeviceOrigin.x;
TextGlyphPos& current = glyphs[i - 1];
int& current_origin = bVertical ? current.m_Origin.y : current.m_Origin.x;
float current_origin_f =
bVertical ? current.m_fDeviceOrigin.y : current.m_fDeviceOrigin.x;
FX_SAFE_INT32 safe_space = next_origin;
safe_space -= current_origin;
if (!safe_space.IsValid())
continue;
int space = safe_space.ValueOrDie();
float space_f = next_origin_f - current_origin_f;
float error = fabs(space_f) - fabs(static_cast<float>(space));
if (error <= 0.5f)
continue;
FX_SAFE_INT32 safe_origin = current_origin;
safe_origin += space > 0 ? -1 : 1;
if (!safe_origin.IsValid())
continue;
current_origin = safe_origin.ValueOrDie();
}
}
const uint8_t g_TextGammaAdjust[256] = {
0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18,
19, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35,
36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
129, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 156,
157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
172, 173, 174, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185,
186, 187, 188, 189, 190, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199,
200, 201, 202, 203, 204, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
228, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 239, 240,
241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 250, 251, 252, 253, 254,
255,
};
int TextGammaAdjust(int value) {
DCHECK(value >= 0);
DCHECK(value <= 255);
return g_TextGammaAdjust[value];
}
int CalcAlpha(int src, int alpha) {
return src * alpha / 255;
}
void MergeGammaAdjust(uint8_t src, int channel, int alpha, uint8_t* dest) {
*dest =
FXDIB_ALPHA_MERGE(*dest, channel, CalcAlpha(TextGammaAdjust(src), alpha));
}
void MergeGammaAdjustRgb(const uint8_t* src,
int r,
int g,
int b,
int a,
uint8_t* dest) {
MergeGammaAdjust(src[2], b, a, &dest[0]);
MergeGammaAdjust(src[1], g, a, &dest[1]);
MergeGammaAdjust(src[0], r, a, &dest[2]);
}
int AverageRgb(const uint8_t* src) {
return (src[0] + src[1] + src[2]) / 3;
}
uint8_t CalculateDestAlpha(uint8_t back_alpha, int src_alpha) {
return back_alpha + src_alpha - back_alpha * src_alpha / 255;
}
void ApplyAlpha(uint8_t* dest, int b, int g, int r, int alpha) {
dest[0] = FXDIB_ALPHA_MERGE(dest[0], b, alpha);
dest[1] = FXDIB_ALPHA_MERGE(dest[1], g, alpha);
dest[2] = FXDIB_ALPHA_MERGE(dest[2], r, alpha);
}
void ApplyDestAlpha(uint8_t back_alpha,
int src_alpha,
int r,
int g,
int b,
uint8_t* dest) {
uint8_t dest_alpha = CalculateDestAlpha(back_alpha, src_alpha);
ApplyAlpha(dest, b, g, r, src_alpha * 255 / dest_alpha);
dest[3] = dest_alpha;
}
void NormalizeArgb(int src_value,
int r,
int g,
int b,
int a,
uint8_t* dest,
int src_alpha) {
uint8_t back_alpha = dest[3];
if (back_alpha == 0)
FXARGB_SETDIB(dest, ArgbEncode(src_alpha, r, g, b));
else if (src_alpha != 0)
ApplyDestAlpha(back_alpha, src_alpha, r, g, b, dest);
}
void NormalizeDest(bool has_alpha,
int src_value,
int r,
int g,
int b,
int a,
uint8_t* dest) {
if (has_alpha) {
NormalizeArgb(src_value, r, g, b, a, dest,
CalcAlpha(TextGammaAdjust(src_value), a));
return;
}
int src_alpha = CalcAlpha(TextGammaAdjust(src_value), a);
if (src_alpha == 0)
return;
ApplyAlpha(dest, b, g, r, src_alpha);
}
void NormalizeSrc(bool has_alpha,
int src_value,
int r,
int g,
int b,
int a,
uint8_t* dest) {
if (!has_alpha) {
ApplyAlpha(dest, b, g, r, CalcAlpha(TextGammaAdjust(src_value), a));
return;
}
int src_alpha = CalcAlpha(TextGammaAdjust(src_value), a);
if (src_alpha != 0)
NormalizeArgb(src_value, r, g, b, a, dest, src_alpha);
}
void NextPixel(uint8_t** src_scan, uint8_t** dst_scan, int bpp) {
*src_scan += 3;
*dst_scan += bpp;
}
void SetAlpha(bool has_alpha, uint8_t* alpha) {
if (has_alpha)
alpha[3] = 255;
}
void DrawNormalTextHelper(const RetainPtr<CFX_DIBitmap>& bitmap,
const RetainPtr<CFX_DIBitmap>& pGlyph,
int nrows,
int left,
int top,
int start_col,
int end_col,
bool normalize,
int x_subpixel,
int a,
int r,
int g,
int b) {
const bool has_alpha = bitmap->GetFormat() == FXDIB_Format::kArgb;
uint8_t* src_buf = pGlyph->GetBuffer();
int src_pitch = pGlyph->GetPitch();
uint8_t* dest_buf = bitmap->GetBuffer();
int dest_pitch = bitmap->GetPitch();
const int Bpp = has_alpha ? 4 : bitmap->GetBPP() / 8;
for (int row = 0; row < nrows; ++row) {
int dest_row = row + top;
if (dest_row < 0 || dest_row >= bitmap->GetHeight())
continue;
uint8_t* src_scan = src_buf + row * src_pitch + (start_col - left) * 3;
uint8_t* dest_scan = dest_buf + dest_row * dest_pitch + start_col * Bpp;
if (x_subpixel == 0) {
for (int col = start_col; col < end_col; ++col) {
if (normalize) {
int src_value = AverageRgb(&src_scan[0]);
NormalizeDest(has_alpha, src_value, r, g, b, a, dest_scan);
} else {
MergeGammaAdjustRgb(&src_scan[0], r, g, b, a, &dest_scan[0]);
SetAlpha(has_alpha, dest_scan);
}
NextPixel(&src_scan, &dest_scan, Bpp);
}
continue;
}
if (x_subpixel == 1) {
if (normalize) {
int src_value = start_col > left ? AverageRgb(&src_scan[-1])
: (src_scan[0] + src_scan[1]) / 3;
NormalizeSrc(has_alpha, src_value, r, g, b, a, dest_scan);
} else {
if (start_col > left)
MergeGammaAdjust(src_scan[-1], r, a, &dest_scan[2]);
MergeGammaAdjust(src_scan[0], g, a, &dest_scan[1]);
MergeGammaAdjust(src_scan[1], b, a, &dest_scan[0]);
SetAlpha(has_alpha, dest_scan);
}
NextPixel(&src_scan, &dest_scan, Bpp);
for (int col = start_col + 1; col < end_col; ++col) {
if (normalize) {
int src_value = AverageRgb(&src_scan[-1]);
NormalizeDest(has_alpha, src_value, r, g, b, a, dest_scan);
} else {
MergeGammaAdjustRgb(&src_scan[-1], r, g, b, a, &dest_scan[0]);
SetAlpha(has_alpha, dest_scan);
}
NextPixel(&src_scan, &dest_scan, Bpp);
}
continue;
}
if (normalize) {
int src_value =
start_col > left ? AverageRgb(&src_scan[-2]) : src_scan[0] / 3;
NormalizeSrc(has_alpha, src_value, r, g, b, a, dest_scan);
} else {
if (start_col > left) {
MergeGammaAdjust(src_scan[-2], r, a, &dest_scan[2]);
MergeGammaAdjust(src_scan[-1], g, a, &dest_scan[1]);
}
MergeGammaAdjust(src_scan[0], b, a, &dest_scan[0]);
SetAlpha(has_alpha, dest_scan);
}
NextPixel(&src_scan, &dest_scan, Bpp);
for (int col = start_col + 1; col < end_col; ++col) {
if (normalize) {
int src_value = AverageRgb(&src_scan[-2]);
NormalizeDest(has_alpha, src_value, r, g, b, a, dest_scan);
} else {
MergeGammaAdjustRgb(&src_scan[-2], r, g, b, a, &dest_scan[0]);
SetAlpha(has_alpha, dest_scan);
}
NextPixel(&src_scan, &dest_scan, Bpp);
}
}
}
bool ShouldDrawDeviceText(const CFX_Font* pFont,
const CFX_TextRenderOptions& options) {
#if defined(OS_APPLE)
if (options.font_is_cid)
return false;
const ByteString bsPsName = pFont->GetPsName();
if (bsPsName.Contains("+ZJHL"))
return false;
if (bsPsName == "CNAAJI+cmex10")
return false;
#endif
return true;
}
// Returns true if the path is a 3-point path that draws A->B->A and forms a
// zero area, or a 2-point path which draws A->B.
bool CheckSimpleLinePath(pdfium::span<const FX_PATHPOINT> points,
const CFX_Matrix* matrix,
bool adjust,
CFX_PathData* new_path,
bool* thin,
bool* set_identity) {
if (points.size() != 2 && points.size() != 3)
return false;
if (points[0].m_Type != FXPT_TYPE::MoveTo ||
points[1].m_Type != FXPT_TYPE::LineTo ||
(points.size() == 3 && (points[2].m_Type != FXPT_TYPE::LineTo ||
points[0].m_Point != points[2].m_Point))) {
return false;
}
// A special case that all points are identical, zero area is formed and no
// thin line needs to be drawn.
if (points[0].m_Point == points[1].m_Point)
return true;
for (size_t i = 0; i < 2; i++) {
CFX_PointF point = points[i].m_Point;
if (adjust) {
if (matrix)
point = matrix->Transform(point);
point = CFX_PointF(static_cast<int>(point.x) + 0.5f,
static_cast<int>(point.y) + 0.5f);
}
new_path->AppendPoint(point,
i == 0 ? FXPT_TYPE::MoveTo : FXPT_TYPE::LineTo);
}
if (adjust && matrix)
*set_identity = true;
*thin = true;
return true;
}
// Returns true if `points` is palindromic and forms zero area. Otherwise,
// returns false.
bool CheckPalindromicPath(pdfium::span<const FX_PATHPOINT> points,
CFX_PathData* new_path,
bool* thin) {
if (points.size() <= 3 || !(points.size() % 2))
return false;
const int mid = points.size() / 2;
bool zero_area = true;
CFX_PathData temp_path;
for (int i = 0; i < mid; i++) {
if (!(points[mid - i - 1].m_Point == points[mid + i + 1].m_Point &&
points[mid - i - 1].m_Type != FXPT_TYPE::BezierTo &&
points[mid + i + 1].m_Type != FXPT_TYPE::BezierTo)) {
zero_area = false;
break;
}
temp_path.AppendPoint(points[mid - i].m_Point, FXPT_TYPE::MoveTo);
temp_path.AppendPoint(points[mid - i - 1].m_Point, FXPT_TYPE::LineTo);
}
if (!zero_area)
return false;
new_path->Append(temp_path, nullptr);
*thin = true;
return true;
}
bool IsFoldingVerticalLine(const CFX_PointF& a,
const CFX_PointF& b,
const CFX_PointF& c) {
return a.x == b.x && b.x == c.x && (b.y - a.y) * (b.y - c.y) > 0;
}
bool IsFoldingHorizontalLine(const CFX_PointF& a,
const CFX_PointF& b,
const CFX_PointF& c) {
return a.y == b.y && b.y == c.y && (b.x - a.x) * (b.x - c.x) > 0;
}
bool IsFoldingDiagonalLine(const CFX_PointF& a,
const CFX_PointF& b,
const CFX_PointF& c) {
return a.x != b.x && c.x != b.x && a.y != b.y && c.y != b.y &&
(a.y - b.y) * (c.x - b.x) == (c.y - b.y) * (a.x - b.x);
}
bool GetZeroAreaPath(pdfium::span<const FX_PATHPOINT> points,
const CFX_Matrix* matrix,
bool adjust,
CFX_PathData* new_path,
bool* thin,
bool* set_identity) {
*set_identity = false;
if (points.size() < 2)
return false;
if (CheckSimpleLinePath(points, matrix, adjust, new_path, thin,
set_identity)) {
return true;
}
if (CheckPalindromicPath(points, new_path, thin))
return true;
for (size_t i = 0; i < points.size(); i++) {
FXPT_TYPE point_type = points[i].m_Type;
if (point_type == FXPT_TYPE::MoveTo) {
DCHECK_EQ(0, i);
continue;
}
if (point_type == FXPT_TYPE::BezierTo) {
i += 2;
DCHECK(i < points.size());
continue;
}
DCHECK_EQ(point_type, FXPT_TYPE::LineTo);
int next_index = (i + 1) % (points.size());
const FX_PATHPOINT& next = points[next_index];
if (next.m_Type == FXPT_TYPE::BezierTo || next.m_Type == FXPT_TYPE::MoveTo)
continue;
const FX_PATHPOINT& prev = points[i - 1];
const FX_PATHPOINT& cur = points[i];
if (IsFoldingVerticalLine(prev.m_Point, cur.m_Point, next.m_Point)) {
bool use_prev = fabs(cur.m_Point.y - prev.m_Point.y) <
fabs(cur.m_Point.y - next.m_Point.y);
const FX_PATHPOINT& start = use_prev ? prev : cur;
const FX_PATHPOINT& end = use_prev ? points[next_index - 1] : next;
new_path->AppendPoint(start.m_Point, FXPT_TYPE::MoveTo);
new_path->AppendPoint(end.m_Point, FXPT_TYPE::LineTo);
continue;
}
if (IsFoldingHorizontalLine(prev.m_Point, cur.m_Point, next.m_Point) ||
IsFoldingDiagonalLine(prev.m_Point, cur.m_Point, next.m_Point)) {
bool use_prev = fabs(cur.m_Point.x - prev.m_Point.x) <
fabs(cur.m_Point.x - next.m_Point.x);
const FX_PATHPOINT& start = use_prev ? prev : cur;
const FX_PATHPOINT& end = use_prev ? points[next_index - 1] : next;
new_path->AppendPoint(start.m_Point, FXPT_TYPE::MoveTo);
new_path->AppendPoint(end.m_Point, FXPT_TYPE::LineTo);
continue;
}
}
size_t new_path_size = new_path->GetPoints().size();
if (points.size() > 3 && new_path_size > 0)
*thin = true;
return new_path_size != 0;
}
} // namespace
CFX_RenderDevice::CFX_RenderDevice() = default;
CFX_RenderDevice::~CFX_RenderDevice() {
RestoreState(false);
#if defined(_SKIA_SUPPORT_) || defined(_SKIA_SUPPORT_PATHS_)
Flush(true);
#endif
}
// static
CFX_Matrix CFX_RenderDevice::GetFlipMatrix(float width,
float height,
float left,
float top) {
return CFX_Matrix(width, 0, 0, -height, left, top + height);
}
#if defined(_SKIA_SUPPORT_) || defined(_SKIA_SUPPORT_PATHS_)
void CFX_RenderDevice::Flush(bool release) {
if (release)
m_pDeviceDriver.reset();
else
m_pDeviceDriver->Flush();
}
#endif
void CFX_RenderDevice::SetDeviceDriver(
std::unique_ptr<RenderDeviceDriverIface> pDriver) {
DCHECK(pDriver);
DCHECK(!m_pDeviceDriver);
m_pDeviceDriver = std::move(pDriver);
InitDeviceInfo();
}
void CFX_RenderDevice::InitDeviceInfo() {
m_Width = m_pDeviceDriver->GetDeviceCaps(FXDC_PIXEL_WIDTH);
m_Height = m_pDeviceDriver->GetDeviceCaps(FXDC_PIXEL_HEIGHT);
m_bpp = m_pDeviceDriver->GetDeviceCaps(FXDC_BITS_PIXEL);
m_RenderCaps = m_pDeviceDriver->GetDeviceCaps(FXDC_RENDER_CAPS);
m_DeviceType = m_pDeviceDriver->GetDeviceType();
if (!m_pDeviceDriver->GetClipBox(&m_ClipBox)) {
m_ClipBox.left = 0;
m_ClipBox.top = 0;
m_ClipBox.right = m_Width;
m_ClipBox.bottom = m_Height;
}
}
void CFX_RenderDevice::SaveState() {
m_pDeviceDriver->SaveState();
}
void CFX_RenderDevice::RestoreState(bool bKeepSaved) {
if (m_pDeviceDriver) {
m_pDeviceDriver->RestoreState(bKeepSaved);
UpdateClipBox();
}
}
int CFX_RenderDevice::GetDeviceCaps(int caps_id) const {
return m_pDeviceDriver->GetDeviceCaps(caps_id);
}
RetainPtr<CFX_DIBitmap> CFX_RenderDevice::GetBitmap() const {
return m_pBitmap;
}
void CFX_RenderDevice::SetBitmap(const RetainPtr<CFX_DIBitmap>& pBitmap) {
m_pBitmap = pBitmap;
}
bool CFX_RenderDevice::CreateCompatibleBitmap(
const RetainPtr<CFX_DIBitmap>& pDIB,
int width,
int height) const {
if (m_RenderCaps & FXRC_BYTEMASK_OUTPUT)
return pDIB->Create(width, height, FXDIB_Format::k8bppMask);
#if defined(_SKIA_SUPPORT_PATHS_)
constexpr FXDIB_Format kFormat = FXDIB_Format::kRgb32;
#else
constexpr FXDIB_Format kFormat = CFX_DIBBase::kPlatformRGBFormat;
#endif
return pDIB->Create(
width, height,
m_RenderCaps & FXRC_ALPHA_OUTPUT ? FXDIB_Format::kArgb : kFormat);
}
void CFX_RenderDevice::SetBaseClip(const FX_RECT& rect) {
m_pDeviceDriver->SetBaseClip(rect);
}
bool CFX_RenderDevice::SetClip_PathFill(
const CFX_PathData* pPathData,
const CFX_Matrix* pObject2Device,
const CFX_FillRenderOptions& fill_options) {
if (!m_pDeviceDriver->SetClip_PathFill(pPathData, pObject2Device,
fill_options)) {
return false;
}
UpdateClipBox();
return true;
}
bool CFX_RenderDevice::SetClip_PathStroke(
const CFX_PathData* pPathData,
const CFX_Matrix* pObject2Device,
const CFX_GraphStateData* pGraphState) {
if (!m_pDeviceDriver->SetClip_PathStroke(pPathData, pObject2Device,
pGraphState)) {
return false;
}
UpdateClipBox();
return true;
}
bool CFX_RenderDevice::SetClip_Rect(const FX_RECT& rect) {
CFX_PathData path;
path.AppendRect(rect.left, rect.bottom, rect.right, rect.top);
if (!SetClip_PathFill(&path, nullptr,
CFX_FillRenderOptions::WindingOptions()))
return false;
UpdateClipBox();
return true;
}
void CFX_RenderDevice::UpdateClipBox() {
if (m_pDeviceDriver->GetClipBox(&m_ClipBox))
return;
m_ClipBox.left = 0;
m_ClipBox.top = 0;
m_ClipBox.right = m_Width;
m_ClipBox.bottom = m_Height;
}
bool CFX_RenderDevice::DrawPath(const CFX_PathData* pPathData,
const CFX_Matrix* pObject2Device,
const CFX_GraphStateData* pGraphState,
uint32_t fill_color,
uint32_t stroke_color,
const CFX_FillRenderOptions& fill_options) {
return DrawPathWithBlend(pPathData, pObject2Device, pGraphState, fill_color,
stroke_color, fill_options, BlendMode::kNormal);
}
bool CFX_RenderDevice::DrawPathWithBlend(
const CFX_PathData* pPathData,
const CFX_Matrix* pObject2Device,
const CFX_GraphStateData* pGraphState,
uint32_t fill_color,
uint32_t stroke_color,
const CFX_FillRenderOptions& fill_options,
BlendMode blend_type) {
const bool fill =
fill_options.fill_type != CFX_FillRenderOptions::FillType::kNoFill;
uint8_t fill_alpha = fill ? FXARGB_A(fill_color) : 0;
uint8_t stroke_alpha = pGraphState ? FXARGB_A(stroke_color) : 0;
pdfium::span<const FX_PATHPOINT> points = pPathData->GetPoints();
if (stroke_alpha == 0 && points.size() == 2) {
CFX_PointF pos1 = points[0].m_Point;
CFX_PointF pos2 = points[1].m_Point;
if (pObject2Device) {
pos1 = pObject2Device->Transform(pos1);
pos2 = pObject2Device->Transform(pos2);
}
DrawCosmeticLine(pos1, pos2, fill_color, fill_options, blend_type);
return true;
}
if (stroke_alpha == 0 && !fill_options.rect_aa) {
Optional<CFX_FloatRect> maybe_rect_f = pPathData->GetRect(pObject2Device);
if (maybe_rect_f.has_value()) {
const CFX_FloatRect& rect_f = maybe_rect_f.value();
FX_RECT rect_i = rect_f.GetOuterRect();
// Depending on the top/bottom, left/right values of the rect it's
// possible to overflow the Width() and Height() calculations. Check that
// the rect will have valid dimension before continuing.
if (!rect_i.Valid())
return false;
int width = static_cast<int>(ceil(rect_f.right - rect_f.left));
if (width < 1) {
width = 1;
if (rect_i.left == rect_i.right)
++rect_i.right;
}
int height = static_cast<int>(ceil(rect_f.top - rect_f.bottom));
if (height < 1) {
height = 1;
if (rect_i.bottom == rect_i.top)
++rect_i.bottom;
}
if (rect_i.Width() >= width + 1) {
if (rect_f.left - static_cast<float>(rect_i.left) >
static_cast<float>(rect_i.right) - rect_f.right) {
++rect_i.left;
} else {
--rect_i.right;
}
}
if (rect_i.Height() >= height + 1) {
if (rect_f.top - static_cast<float>(rect_i.top) >
static_cast<float>(rect_i.bottom) - rect_f.bottom) {
++rect_i.top;
} else {
--rect_i.bottom;
}
}
if (FillRectWithBlend(rect_i, fill_color, blend_type))
return true;
}
}
if (fill && stroke_alpha == 0 && !fill_options.stroke &&
!fill_options.text_mode) {
bool adjust = !!m_pDeviceDriver->GetDriverType();
std::vector<FX_PATHPOINT> sub_path;
for (size_t i = 0; i < points.size(); i++) {
FXPT_TYPE point_type = points[i].m_Type;
if (point_type == FXPT_TYPE::MoveTo) {
// Process the exisitng sub path.
DrawZeroAreaPath(sub_path, pObject2Device, adjust,
fill_options.aliased_path, fill_color, fill_alpha,
blend_type);
sub_path.clear();
// Start forming the next sub path.
sub_path.push_back(points[i]);
continue;
}
if (point_type == FXPT_TYPE::BezierTo) {
sub_path.push_back(points[i]);
sub_path.push_back(points[i + 1]);
sub_path.push_back(points[i + 2]);
i += 2;
continue;
}
DCHECK_EQ(point_type, FXPT_TYPE::LineTo);
sub_path.push_back(points[i]);
continue;
}
// Process the last sub paths.
DrawZeroAreaPath(sub_path, pObject2Device, adjust,
fill_options.aliased_path, fill_color, fill_alpha,
blend_type);
}
if (fill && fill_alpha && stroke_alpha < 0xff && fill_options.stroke) {
if (m_RenderCaps & FXRC_FILLSTROKE_PATH) {
return m_pDeviceDriver->DrawPath(pPathData, pObject2Device, pGraphState,
fill_color, stroke_color, fill_options,
blend_type);
}
return DrawFillStrokePath(pPathData, pObject2Device, pGraphState,
fill_color, stroke_color, fill_options,
blend_type);
}
return m_pDeviceDriver->DrawPath(pPathData, pObject2Device, pGraphState,
fill_color, stroke_color, fill_options,
blend_type);
}
// This can be removed once PDFium entirely relies on Skia
bool CFX_RenderDevice::DrawFillStrokePath(
const CFX_PathData* pPathData,
const CFX_Matrix* pObject2Device,
const CFX_GraphStateData* pGraphState,
uint32_t fill_color,
uint32_t stroke_color,
const CFX_FillRenderOptions& fill_options,
BlendMode blend_type) {
if (!(m_RenderCaps & FXRC_GET_BITS))
return false;
CFX_FloatRect bbox;
if (pGraphState) {
bbox = pPathData->GetBoundingBoxForStrokePath(pGraphState->m_LineWidth,
pGraphState->m_MiterLimit);
} else {
bbox = pPathData->GetBoundingBox();
}
if (pObject2Device)
bbox = pObject2Device->TransformRect(bbox);
FX_RECT rect = bbox.GetOuterRect();
if (!rect.Valid())
return false;
auto bitmap = pdfium::MakeRetain<CFX_DIBitmap>();
auto backdrop = pdfium::MakeRetain<CFX_DIBitmap>();
if (!CreateCompatibleBitmap(bitmap, rect.Width(), rect.Height()))
return false;
if (bitmap->IsAlphaFormat()) {
bitmap->Clear(0);
backdrop->Copy(bitmap);
} else {
if (!m_pDeviceDriver->GetDIBits(bitmap, rect.left, rect.top))
return false;
backdrop->Copy(bitmap);
}
CFX_DefaultRenderDevice bitmap_device;
bitmap_device.Attach(bitmap, false, backdrop, true);
CFX_Matrix matrix;
if (pObject2Device)
matrix = *pObject2Device;
matrix.Translate(-rect.left, -rect.top);
if (!bitmap_device.GetDeviceDriver()->DrawPath(
pPathData, &matrix, pGraphState, fill_color, stroke_color,
fill_options, blend_type)) {
return false;
}
#if defined(_SKIA_SUPPORT_) || defined(_SKIA_SUPPORT_PATHS_)
bitmap_device.GetDeviceDriver()->Flush();
#endif
FX_RECT src_rect(0, 0, rect.Width(), rect.Height());
return m_pDeviceDriver->SetDIBits(bitmap, 0, src_rect, rect.left, rect.top,
BlendMode::kNormal);
}
bool CFX_RenderDevice::FillRectWithBlend(const FX_RECT& rect,
uint32_t fill_color,
BlendMode blend_type) {
if (m_pDeviceDriver->FillRectWithBlend(rect, fill_color, blend_type))
return true;
if (!(m_RenderCaps & FXRC_GET_BITS))
return false;
auto bitmap = pdfium::MakeRetain<CFX_DIBitmap>();
if (!CreateCompatibleBitmap(bitmap, rect.Width(), rect.Height()))
return false;
if (!m_pDeviceDriver->GetDIBits(bitmap, rect.left, rect.top))
return false;
if (!bitmap->CompositeRect(0, 0, rect.Width(), rect.Height(), fill_color))
return false;
FX_RECT src_rect(0, 0, rect.Width(), rect.Height());
m_pDeviceDriver->SetDIBits(bitmap, 0, src_rect, rect.left, rect.top,
BlendMode::kNormal);
return true;
}
bool CFX_RenderDevice::DrawCosmeticLine(
const CFX_PointF& ptMoveTo,
const CFX_PointF& ptLineTo,
uint32_t color,
const CFX_FillRenderOptions& fill_options,
BlendMode blend_type) {
if ((color >= 0xff000000) && m_pDeviceDriver->DrawCosmeticLine(
ptMoveTo, ptLineTo, color, blend_type)) {
return true;
}
CFX_GraphStateData graph_state;
CFX_PathData path;
path.AppendPoint(ptMoveTo, FXPT_TYPE::MoveTo);
path.AppendPoint(ptLineTo, FXPT_TYPE::LineTo);
return m_pDeviceDriver->DrawPath(&path, nullptr, &graph_state, 0, color,
fill_options, blend_type);
}
void CFX_RenderDevice::DrawZeroAreaPath(const std::vector<FX_PATHPOINT>& path,
const CFX_Matrix* matrix,
bool adjust,
bool aliased_path,
uint32_t fill_color,
uint8_t fill_alpha,
BlendMode blend_type) {
if (path.empty())
return;
CFX_PathData new_path;
bool thin = false;
bool set_identity = false;
if (!GetZeroAreaPath(path, matrix, adjust, &new_path, &thin, &set_identity))
return;
CFX_GraphStateData graph_state;
graph_state.m_LineWidth = 0.0f;
uint32_t stroke_color = fill_color;
if (thin)
stroke_color = (((fill_alpha >> 2) << 24) | (stroke_color & 0x00ffffff));
const CFX_Matrix* new_matrix = nullptr;
if (matrix && !matrix->IsIdentity() && !set_identity)
new_matrix = matrix;
CFX_FillRenderOptions path_options;
path_options.zero_area = true;
if (aliased_path)
path_options.aliased_path = true;
m_pDeviceDriver->DrawPath(&new_path, new_matrix, &graph_state, 0,
stroke_color, path_options, blend_type);
}
bool CFX_RenderDevice::GetDIBits(const RetainPtr<CFX_DIBitmap>& pBitmap,
int left,
int top) {
return (m_RenderCaps & FXRC_GET_BITS) &&
m_pDeviceDriver->GetDIBits(pBitmap, left, top);
}
RetainPtr<CFX_DIBitmap> CFX_RenderDevice::GetBackDrop() {
return m_pDeviceDriver->GetBackDrop();
}
bool CFX_RenderDevice::SetDIBitsWithBlend(const RetainPtr<CFX_DIBBase>& pBitmap,
int left,
int top,
BlendMode blend_mode) {
DCHECK(!pBitmap->IsMaskFormat());
FX_RECT dest_rect(left, top, left + pBitmap->GetWidth(),
top + pBitmap->GetHeight());
dest_rect.Intersect(m_ClipBox);
if (dest_rect.IsEmpty())
return true;
FX_RECT src_rect(dest_rect.left - left, dest_rect.top - top,
dest_rect.left - left + dest_rect.Width(),
dest_rect.top - top + dest_rect.Height());
if ((blend_mode == BlendMode::kNormal || (m_RenderCaps & FXRC_BLEND_MODE)) &&
(!pBitmap->IsAlphaFormat() || (m_RenderCaps & FXRC_ALPHA_IMAGE))) {
return m_pDeviceDriver->SetDIBits(pBitmap, 0, src_rect, dest_rect.left,
dest_rect.top, blend_mode);
}
if (!(m_RenderCaps & FXRC_GET_BITS))
return false;
int bg_pixel_width = dest_rect.Width();
int bg_pixel_height = dest_rect.Height();
auto background = pdfium::MakeRetain<CFX_DIBitmap>();
if (!background->Create(bg_pixel_width, bg_pixel_height,
FXDIB_Format::kRgb32)) {
return false;
}
if (!m_pDeviceDriver->GetDIBits(background, dest_rect.left, dest_rect.top))
return false;
if (!background->CompositeBitmap(0, 0, bg_pixel_width, bg_pixel_height,
pBitmap, src_rect.left, src_rect.top,
blend_mode, nullptr, false)) {
return false;
}
FX_RECT rect(0, 0, bg_pixel_width, bg_pixel_height);
return m_pDeviceDriver->SetDIBits(background, 0, rect, dest_rect.left,
dest_rect.top, BlendMode::kNormal);
}
bool CFX_RenderDevice::StretchDIBitsWithFlagsAndBlend(
const RetainPtr<CFX_DIBBase>& pBitmap,
int left,
int top,
int dest_width,
int dest_height,
const FXDIB_ResampleOptions& options,
BlendMode blend_mode) {
FX_RECT dest_rect(left, top, left + dest_width, top + dest_height);
FX_RECT clip_box = m_ClipBox;
clip_box.Intersect(dest_rect);
return clip_box.IsEmpty() || m_pDeviceDriver->StretchDIBits(
pBitmap, 0, left, top, dest_width,
dest_height, &clip_box, options, blend_mode);
}
bool CFX_RenderDevice::SetBitMask(const RetainPtr<CFX_DIBBase>& pBitmap,
int left,
int top,
uint32_t argb) {
FX_RECT src_rect(0, 0, pBitmap->GetWidth(), pBitmap->GetHeight());
return m_pDeviceDriver->SetDIBits(pBitmap, argb, src_rect, left, top,
BlendMode::kNormal);
}
bool CFX_RenderDevice::StretchBitMask(const RetainPtr<CFX_DIBBase>& pBitmap,
int left,
int top,
int dest_width,
int dest_height,
uint32_t color) {
return StretchBitMaskWithFlags(pBitmap, left, top, dest_width, dest_height,
color, FXDIB_ResampleOptions());
}
bool CFX_RenderDevice::StretchBitMaskWithFlags(
const RetainPtr<CFX_DIBBase>& pBitmap,
int left,
int top,
int dest_width,
int dest_height,
uint32_t argb,
const FXDIB_ResampleOptions& options) {
FX_RECT dest_rect(left, top, left + dest_width, top + dest_height);
FX_RECT clip_box = m_ClipBox;
clip_box.Intersect(dest_rect);
return m_pDeviceDriver->StretchDIBits(pBitmap, argb, left, top, dest_width,
dest_height, &clip_box, options,
BlendMode::kNormal);
}
bool CFX_RenderDevice::StartDIBitsWithBlend(
const RetainPtr<CFX_DIBBase>& pBitmap,
int bitmap_alpha,
uint32_t argb,
const CFX_Matrix& matrix,
const FXDIB_ResampleOptions& options,
std::unique_ptr<CFX_ImageRenderer>* handle,
BlendMode blend_mode) {
return m_pDeviceDriver->StartDIBits(pBitmap, bitmap_alpha, argb, matrix,
options, handle, blend_mode);
}
bool CFX_RenderDevice::ContinueDIBits(CFX_ImageRenderer* handle,
PauseIndicatorIface* pPause) {
return m_pDeviceDriver->ContinueDIBits(handle, pPause);
}
#if defined(_SKIA_SUPPORT_)
void CFX_RenderDevice::DebugVerifyBitmapIsPreMultiplied() const {
NOTREACHED();
}
bool CFX_RenderDevice::SetBitsWithMask(const RetainPtr<CFX_DIBBase>& pBitmap,
const RetainPtr<CFX_DIBBase>& pMask,
int left,
int top,
int bitmap_alpha,
BlendMode blend_type) {
return m_pDeviceDriver->SetBitsWithMask(pBitmap, pMask, left, top,
bitmap_alpha, blend_type);
}
#endif
bool CFX_RenderDevice::DrawNormalText(int nChars,
const TextCharPos* pCharPos,
CFX_Font* pFont,
float font_size,
const CFX_Matrix& mtText2Device,
uint32_t fill_color,
const CFX_TextRenderOptions& options) {
// |anti_alias| and |normalize| don't affect Skia/SkiaPaths rendering.
int anti_alias = FT_RENDER_MODE_MONO;
bool normalize = false;
const bool is_text_smooth = options.IsSmooth();
// |text_options| has the potential to affect all derived classes of
// RenderDeviceDriverIface. But now it only affects Skia rendering.
CFX_TextRenderOptions text_options(options);
if (is_text_smooth) {
if (GetDeviceType() == DeviceType::kDisplay && m_bpp > 1) {
if (!CFX_GEModule::Get()->GetFontMgr()->FTLibrarySupportsHinting()) {
// Some Freetype implementations (like the one packaged with Fedora) do
// not support hinting due to patents 6219025, 6239783, 6307566,
// 6225973, 6243070, 6393145, 6421054, 6282327, and 6624828; the latest
// one expires 10/7/19. This makes LCD anti-aliasing very ugly, so we
// instead fall back on NORMAL anti-aliasing.
anti_alias = FT_RENDER_MODE_NORMAL;
#if defined(_SKIA_SUPPORT_) || defined(_SKIA_SUPPORT_PATHS_)
// Since |anti_alias| doesn't affect Skia rendering, and Skia only
// follows strictly to the options provided by |text_options|, we need
// to update |text_options| so that Skia falls back on normal
// anti-aliasing as well.
text_options.aliasing_type = CFX_TextRenderOptions::kAntiAliasing;
#endif
} else if ((m_RenderCaps & FXRC_ALPHA_OUTPUT)) {
// Whether Skia uses LCD optimization should strictly follow the
// rendering options provided by |text_options|. No change needs to be
// done for |text_options| here.
anti_alias = FT_RENDER_MODE_LCD;
normalize = true;
} else if (m_bpp < 16) {
// This case doesn't apply to Skia since Skia always have |m_bpp| = 32.
anti_alias = FT_RENDER_MODE_NORMAL;
} else {
// Whether Skia uses LCD optimization should strictly follow the
// rendering options provided by |text_options|. No change needs to be
// done for |text_options| here.
anti_alias = FT_RENDER_MODE_LCD;
normalize = !pFont->GetFaceRec() ||
options.aliasing_type != CFX_TextRenderOptions::kLcd;
}
}
}
if (GetDeviceType() != DeviceType::kDisplay) {
if (ShouldDrawDeviceText(pFont, options) &&
m_pDeviceDriver->DrawDeviceText(nChars, pCharPos, pFont, mtText2Device,
font_size, fill_color, text_options)) {
return true;
}
if (FXARGB_A(fill_color) < 255)
return false;
} else if (options.native_text) {
if (ShouldDrawDeviceText(pFont, options) &&
m_pDeviceDriver->DrawDeviceText(nChars, pCharPos, pFont, mtText2Device,
font_size, fill_color, text_options)) {
return true;
}
}
CFX_Matrix char2device = mtText2Device;
CFX_Matrix text2Device = mtText2Device;
char2device.Scale(font_size, -font_size);
if (fabs(char2device.a) + fabs(char2device.b) > 50 * 1.0f ||
GetDeviceType() == DeviceType::kPrinter) {
if (pFont->GetFaceRec()) {
CFX_FillRenderOptions path_options;
path_options.aliased_path = !is_text_smooth;
return DrawTextPath(nChars, pCharPos, pFont, font_size, mtText2Device,
nullptr, nullptr, fill_color, 0, nullptr,
path_options);
}
}
std::vector<TextGlyphPos> glyphs(nChars);
CFX_Matrix deviceCtm = char2device;
for (size_t i = 0; i < glyphs.size(); ++i) {
TextGlyphPos& glyph = glyphs[i];
const TextCharPos& charpos = pCharPos[i];
glyph.m_fDeviceOrigin = text2Device.Transform(charpos.m_Origin);
if (anti_alias < FT_RENDER_MODE_LCD)
glyph.m_Origin.x = FXSYS_roundf(glyph.m_fDeviceOrigin.x);
else
glyph.m_Origin.x = static_cast<int>(floor(glyph.m_fDeviceOrigin.x));
glyph.m_Origin.y = FXSYS_roundf(glyph.m_fDeviceOrigin.y);
if (charpos.m_bGlyphAdjust) {
CFX_Matrix new_matrix(
charpos.m_AdjustMatrix[0], charpos.m_AdjustMatrix[1],
charpos.m_AdjustMatrix[2], charpos.m_AdjustMatrix[3], 0, 0);
new_matrix.Concat(deviceCtm);
glyph.m_pGlyph = pFont->LoadGlyphBitmap(
charpos.m_GlyphIndex, charpos.m_bFontStyle, new_matrix,
charpos.m_FontCharWidth, anti_alias, &text_options);
} else {
glyph.m_pGlyph = pFont->LoadGlyphBitmap(
charpos.m_GlyphIndex, charpos.m_bFontStyle, deviceCtm,
charpos.m_FontCharWidth, anti_alias, &text_options);
}
}
if (anti_alias < FT_RENDER_MODE_LCD && glyphs.size() > 1)
AdjustGlyphSpace(&glyphs);
FX_RECT bmp_rect = GetGlyphsBBox(glyphs, anti_alias);
bmp_rect.Intersect(m_ClipBox);
if (bmp_rect.IsEmpty())
return true;
int pixel_width = bmp_rect.Width();
int pixel_height = bmp_rect.Height();
int pixel_left = bmp_rect.left;
int pixel_top = bmp_rect.top;
if (anti_alias == FT_RENDER_MODE_MONO) {
auto bitmap = pdfium::MakeRetain<CFX_DIBitmap>();
if (!bitmap->Create(pixel_width, pixel_height, FXDIB_Format::k1bppMask))
return false;
bitmap->Clear(0);
for (const TextGlyphPos& glyph : glyphs) {
if (!glyph.m_pGlyph)
continue;
Optional<CFX_Point> point = glyph.GetOrigin({pixel_left, pixel_top});
if (!point.has_value())
continue;
const RetainPtr<CFX_DIBitmap>& pGlyph = glyph.m_pGlyph->GetBitmap();
bitmap->TransferBitmap(point.value().x, point.value().y,
pGlyph->GetWidth(), pGlyph->GetHeight(), pGlyph, 0,
0);
}
return SetBitMask(bitmap, bmp_rect.left, bmp_rect.top, fill_color);
}
auto bitmap = pdfium::MakeRetain<CFX_DIBitmap>();
if (m_bpp == 8) {
if (!bitmap->Create(pixel_width, pixel_height, FXDIB_Format::k8bppMask))
return false;
} else {
if (!CreateCompatibleBitmap(bitmap, pixel_width, pixel_height))
return false;
}
if (!bitmap->IsAlphaFormat() && !bitmap->IsMaskFormat()) {
bitmap->Clear(0xFFFFFFFF);
if (!GetDIBits(bitmap, bmp_rect.left, bmp_rect.top))
return false;
} else {
bitmap->Clear(0);
if (bitmap->HasAlphaMask())
bitmap->GetAlphaMask()->Clear(0);
}
int dest_width = pixel_width;
int a = 0;
int r = 0;
int g = 0;
int b = 0;
if (anti_alias == FT_RENDER_MODE_LCD)
std::tie(a, r, g, b) = ArgbDecode(fill_color);
for (const TextGlyphPos& glyph : glyphs) {
if (!glyph.m_pGlyph)
continue;
Optional<CFX_Point> point = glyph.GetOrigin({pixel_left, pixel_top});
if (!point.has_value())
continue;
const RetainPtr<CFX_DIBitmap>& pGlyph = glyph.m_pGlyph->GetBitmap();
int ncols = pGlyph->GetWidth();
int nrows = pGlyph->GetHeight();
if (anti_alias == FT_RENDER_MODE_NORMAL) {
if (!bitmap->CompositeMask(point.value().x, point.value().y, ncols, nrows,
pGlyph, fill_color, 0, 0, BlendMode::kNormal,
nullptr, false)) {
return false;
}
continue;
}
ncols /= 3;
int x_subpixel = static_cast<int>(glyph.m_fDeviceOrigin.x * 3) % 3;
int start_col = std::max(point->x, 0);
FX_SAFE_INT32 end_col_safe = point->x;
end_col_safe += ncols;
if (!end_col_safe.IsValid())
continue;
int end_col = std::min<int>(end_col_safe.ValueOrDie(), dest_width);
if (start_col >= end_col)
continue;
DrawNormalTextHelper(bitmap, pGlyph, nrows, point->x, point->y, start_col,
end_col, normalize, x_subpixel, a, r, g, b);
}
if (bitmap->IsMaskFormat())
SetBitMask(bitmap, bmp_rect.left, bmp_rect.top, fill_color);
else
SetDIBits(bitmap, bmp_rect.left, bmp_rect.top);
return true;
}
bool CFX_RenderDevice::DrawTextPath(int nChars,
const TextCharPos* pCharPos,
CFX_Font* pFont,
float font_size,
const CFX_Matrix& mtText2User,
const CFX_Matrix* pUser2Device,
const CFX_GraphStateData* pGraphState,
uint32_t fill_color,
FX_ARGB stroke_color,
CFX_PathData* pClippingPath,
const CFX_FillRenderOptions& fill_options) {
for (int iChar = 0; iChar < nChars; ++iChar) {
const TextCharPos& charpos = pCharPos[iChar];
CFX_Matrix matrix;
if (charpos.m_bGlyphAdjust) {
matrix = CFX_Matrix(charpos.m_AdjustMatrix[0], charpos.m_AdjustMatrix[1],
charpos.m_AdjustMatrix[2], charpos.m_AdjustMatrix[3],
0, 0);
}
matrix.Concat(CFX_Matrix(font_size, 0, 0, font_size, charpos.m_Origin.x,
charpos.m_Origin.y));
const CFX_PathData* pPath =
pFont->LoadGlyphPath(charpos.m_GlyphIndex, charpos.m_FontCharWidth);
if (!pPath)
continue;
matrix.Concat(mtText2User);
CFX_PathData TransformedPath(*pPath);
TransformedPath.Transform(matrix);
if (fill_color || stroke_color) {
CFX_FillRenderOptions options(fill_options);
if (fill_color)
options.fill_type = CFX_FillRenderOptions::FillType::kWinding;
options.text_mode = true;
if (!DrawPathWithBlend(&TransformedPath, pUser2Device, pGraphState,
fill_color, stroke_color, options,
BlendMode::kNormal)) {
return false;
}
}
if (pClippingPath)
pClippingPath->Append(TransformedPath, pUser2Device);
}
return true;
}
void CFX_RenderDevice::DrawFillRect(const CFX_Matrix* pUser2Device,
const CFX_FloatRect& rect,
const FX_COLORREF& color) {
CFX_PathData path;
path.AppendFloatRect(rect);
DrawPath(&path, pUser2Device, nullptr, color, 0,
CFX_FillRenderOptions::WindingOptions());
}
void CFX_RenderDevice::DrawFillArea(const CFX_Matrix& mtUser2Device,
const std::vector<CFX_PointF>& points,
const FX_COLORREF& color) {
DCHECK(!points.empty());
CFX_PathData path;
path.AppendPoint(points[0], FXPT_TYPE::MoveTo);
for (size_t i = 1; i < points.size(); ++i)
path.AppendPoint(points[i], FXPT_TYPE::LineTo);
DrawPath(&path, &mtUser2Device, nullptr, color, 0,
CFX_FillRenderOptions::EvenOddOptions());
}
void CFX_RenderDevice::DrawStrokeRect(const CFX_Matrix& mtUser2Device,
const CFX_FloatRect& rect,
const FX_COLORREF& color,
float fWidth) {
CFX_GraphStateData gsd;
gsd.m_LineWidth = fWidth;
CFX_PathData path;
path.AppendFloatRect(rect);
DrawPath(&path, &mtUser2Device, &gsd, 0, color,
CFX_FillRenderOptions::EvenOddOptions());
}
void CFX_RenderDevice::DrawStrokeLine(const CFX_Matrix* pUser2Device,
const CFX_PointF& ptMoveTo,
const CFX_PointF& ptLineTo,
const FX_COLORREF& color,
float fWidth) {
CFX_PathData path;
path.AppendPoint(ptMoveTo, FXPT_TYPE::MoveTo);
path.AppendPoint(ptLineTo, FXPT_TYPE::LineTo);
CFX_GraphStateData gsd;
gsd.m_LineWidth = fWidth;
DrawPath(&path, pUser2Device, &gsd, 0, color,
CFX_FillRenderOptions::EvenOddOptions());
}
void CFX_RenderDevice::DrawFillRect(const CFX_Matrix* pUser2Device,
const CFX_FloatRect& rect,
const CFX_Color& color,
int32_t nTransparency) {
DrawFillRect(pUser2Device, rect, color.ToFXColor(nTransparency));
}
void CFX_RenderDevice::DrawShadow(const CFX_Matrix& mtUser2Device,
bool bVertical,
bool bHorizontal,
const CFX_FloatRect& rect,
int32_t nTransparency,
int32_t nStartGray,
int32_t nEndGray) {
constexpr float kBorder = 0.5f;
constexpr float kSegmentWidth = 1.0f;
constexpr float kLineWidth = 1.5f;
if (bVertical) {
float fStepGray = (nEndGray - nStartGray) / rect.Height();
CFX_PointF start(rect.left, 0);
CFX_PointF end(rect.right, 0);
for (float fy = rect.bottom + kBorder; fy <= rect.top - kBorder;
fy += kSegmentWidth) {
start.y = fy;
end.y = fy;
int nGray = nStartGray + static_cast<int>(fStepGray * (fy - rect.bottom));
FX_ARGB color = ArgbEncode(nTransparency, nGray, nGray, nGray);
DrawStrokeLine(&mtUser2Device, start, end, color, kLineWidth);
}
}
if (bHorizontal) {
float fStepGray = (nEndGray - nStartGray) / rect.Width();
CFX_PointF start(0, rect.bottom);
CFX_PointF end(0, rect.top);
for (float fx = rect.left + kBorder; fx <= rect.right - kBorder;
fx += kSegmentWidth) {
start.x = fx;
end.x = fx;
int nGray = nStartGray + static_cast<int>(fStepGray * (fx - rect.left));
FX_ARGB color = ArgbEncode(nTransparency, nGray, nGray, nGray);
DrawStrokeLine(&mtUser2Device, start, end, color, kLineWidth);
}
}
}
void CFX_RenderDevice::DrawBorder(const CFX_Matrix* pUser2Device,
const CFX_FloatRect& rect,
float fWidth,
const CFX_Color& color,
const CFX_Color& crLeftTop,
const CFX_Color& crRightBottom,
BorderStyle nStyle,
int32_t nTransparency) {
if (fWidth <= 0.0f)
return;
const float fLeft = rect.left;
const float fRight = rect.right;
const float fTop = rect.top;
const float fBottom = rect.bottom;
const float fHalfWidth = fWidth / 2.0f;
switch (nStyle) {
default:
case BorderStyle::kSolid: {
CFX_PathData path;
path.AppendRect(fLeft, fBottom, fRight, fTop);
path.AppendRect(fLeft + fWidth, fBottom + fWidth, fRight - fWidth,
fTop - fWidth);
DrawPath(&path, pUser2Device, nullptr, color.ToFXColor(nTransparency), 0,
CFX_FillRenderOptions::EvenOddOptions());
break;
}
case BorderStyle::kDash: {
CFX_GraphStateData gsd;
gsd.m_DashArray = {3.0f, 3.0f};
gsd.m_DashPhase = 0;
gsd.m_LineWidth = fWidth;
CFX_PathData path;
path.AppendPoint(CFX_PointF(fLeft + fHalfWidth, fBottom + fHalfWidth),
FXPT_TYPE::MoveTo);
path.AppendPoint(CFX_PointF(fLeft + fHalfWidth, fTop - fHalfWidth),
FXPT_TYPE::LineTo);
path.AppendPoint(CFX_PointF(fRight - fHalfWidth, fTop - fHalfWidth),
FXPT_TYPE::LineTo);
path.AppendPoint(CFX_PointF(fRight - fHalfWidth, fBottom + fHalfWidth),
FXPT_TYPE::LineTo);
path.AppendPoint(CFX_PointF(fLeft + fHalfWidth, fBottom + fHalfWidth),
FXPT_TYPE::LineTo);
DrawPath(&path, pUser2Device, &gsd, 0, color.ToFXColor(nTransparency),
CFX_FillRenderOptions::WindingOptions());
break;
}
case BorderStyle::kBeveled:
case BorderStyle::kInset: {
CFX_GraphStateData gsd;
gsd.m_LineWidth = fHalfWidth;
CFX_PathData path_left_top;
path_left_top.AppendPoint(
CFX_PointF(fLeft + fHalfWidth, fBottom + fHalfWidth),
FXPT_TYPE::MoveTo);
path_left_top.AppendPoint(
CFX_PointF(fLeft + fHalfWidth, fTop - fHalfWidth), FXPT_TYPE::LineTo);
path_left_top.AppendPoint(
CFX_PointF(fRight - fHalfWidth, fTop - fHalfWidth),
FXPT_TYPE::LineTo);
path_left_top.AppendPoint(CFX_PointF(fRight - fWidth, fTop - fWidth),
FXPT_TYPE::LineTo);
path_left_top.AppendPoint(CFX_PointF(fLeft + fWidth, fTop - fWidth),
FXPT_TYPE::LineTo);
path_left_top.AppendPoint(CFX_PointF(fLeft + fWidth, fBottom + fWidth),
FXPT_TYPE::LineTo);
path_left_top.AppendPoint(
CFX_PointF(fLeft + fHalfWidth, fBottom + fHalfWidth),
FXPT_TYPE::LineTo);
DrawPath(&path_left_top, pUser2Device, &gsd,
crLeftTop.ToFXColor(nTransparency), 0,
CFX_FillRenderOptions::EvenOddOptions());
CFX_PathData path_right_bottom;
path_right_bottom.AppendPoint(
CFX_PointF(fRight - fHalfWidth, fTop - fHalfWidth),
FXPT_TYPE::MoveTo);
path_right_bottom.AppendPoint(
CFX_PointF(fRight - fHalfWidth, fBottom + fHalfWidth),
FXPT_TYPE::LineTo);
path_right_bottom.AppendPoint(
CFX_PointF(fLeft + fHalfWidth, fBottom + fHalfWidth),
FXPT_TYPE::LineTo);
path_right_bottom.AppendPoint(
CFX_PointF(fLeft + fWidth, fBottom + fWidth), FXPT_TYPE::LineTo);
path_right_bottom.AppendPoint(
CFX_PointF(fRight - fWidth, fBottom + fWidth), FXPT_TYPE::LineTo);
path_right_bottom.AppendPoint(CFX_PointF(fRight - fWidth, fTop - fWidth),
FXPT_TYPE::LineTo);
path_right_bottom.AppendPoint(
CFX_PointF(fRight - fHalfWidth, fTop - fHalfWidth),
FXPT_TYPE::LineTo);
DrawPath(&path_right_bottom, pUser2Device, &gsd,
crRightBottom.ToFXColor(nTransparency), 0,
CFX_FillRenderOptions::EvenOddOptions());
CFX_PathData path;
path.AppendRect(fLeft, fBottom, fRight, fTop);
path.AppendRect(fLeft + fHalfWidth, fBottom + fHalfWidth,
fRight - fHalfWidth, fTop - fHalfWidth);
DrawPath(&path, pUser2Device, &gsd, color.ToFXColor(nTransparency), 0,
CFX_FillRenderOptions::EvenOddOptions());
break;
}
case BorderStyle::kUnderline: {
CFX_GraphStateData gsd;
gsd.m_LineWidth = fWidth;
CFX_PathData path;
path.AppendPoint(CFX_PointF(fLeft, fBottom + fHalfWidth),
FXPT_TYPE::MoveTo);
path.AppendPoint(CFX_PointF(fRight, fBottom + fHalfWidth),
FXPT_TYPE::LineTo);
DrawPath(&path, pUser2Device, &gsd, 0, color.ToFXColor(nTransparency),
CFX_FillRenderOptions::EvenOddOptions());
break;
}
}
}
CFX_RenderDevice::StateRestorer::StateRestorer(CFX_RenderDevice* pDevice)
: m_pDevice(pDevice) {
m_pDevice->SaveState();
}
CFX_RenderDevice::StateRestorer::~StateRestorer() {
m_pDevice->RestoreState(false);
}