| // Copyright 2017 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #ifndef THIRD_PARTY_BASE_SPAN_H_ | 
 | #define THIRD_PARTY_BASE_SPAN_H_ | 
 |  | 
 | #include <stddef.h> | 
 |  | 
 | #include <algorithm> | 
 | #include <array> | 
 | #include <iterator> | 
 | #include <type_traits> | 
 | #include <utility> | 
 |  | 
 | #include "core/fxcrt/unowned_ptr.h" | 
 | #include "third_party/base/check.h" | 
 |  | 
 | namespace pdfium { | 
 |  | 
 | constexpr size_t dynamic_extent = static_cast<size_t>(-1); | 
 |  | 
 | template <typename T> | 
 | class span; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename T> | 
 | struct IsSpanImpl : std::false_type {}; | 
 |  | 
 | template <typename T> | 
 | struct IsSpanImpl<span<T>> : std::true_type {}; | 
 |  | 
 | template <typename T> | 
 | using IsSpan = IsSpanImpl<typename std::decay<T>::type>; | 
 |  | 
 | template <typename T> | 
 | struct IsStdArrayImpl : std::false_type {}; | 
 |  | 
 | template <typename T, size_t N> | 
 | struct IsStdArrayImpl<std::array<T, N>> : std::true_type {}; | 
 |  | 
 | template <typename T> | 
 | using IsStdArray = IsStdArrayImpl<typename std::decay<T>::type>; | 
 |  | 
 | template <typename From, typename To> | 
 | using IsLegalSpanConversion = std::is_convertible<From*, To*>; | 
 |  | 
 | template <typename Container, typename T> | 
 | using ContainerHasConvertibleData = | 
 |     IsLegalSpanConversion<typename std::remove_pointer<decltype( | 
 |                               std::declval<Container>().data())>::type, | 
 |                           T>; | 
 | template <typename Container> | 
 | using ContainerHasIntegralSize = | 
 |     std::is_integral<decltype(std::declval<Container>().size())>; | 
 |  | 
 | template <typename From, typename To> | 
 | using EnableIfLegalSpanConversion = | 
 |     typename std::enable_if<IsLegalSpanConversion<From, To>::value>::type; | 
 |  | 
 | // SFINAE check if Container can be converted to a span<T>. Note that the | 
 | // implementation details of this check differ slightly from the requirements in | 
 | // the working group proposal: in particular, the proposal also requires that | 
 | // the container conversion constructor participate in overload resolution only | 
 | // if two additional conditions are true: | 
 | // | 
 | //   1. Container implements operator[]. | 
 | //   2. Container::value_type matches remove_const_t<element_type>. | 
 | // | 
 | // The requirements are relaxed slightly here: in particular, not requiring (2) | 
 | // means that an immutable span can be easily constructed from a mutable | 
 | // container. | 
 | template <typename Container, typename T> | 
 | using EnableIfSpanCompatibleContainer = | 
 |     typename std::enable_if<!internal::IsSpan<Container>::value && | 
 |                             !internal::IsStdArray<Container>::value && | 
 |                             ContainerHasConvertibleData<Container, T>::value && | 
 |                             ContainerHasIntegralSize<Container>::value>::type; | 
 |  | 
 | template <typename Container, typename T> | 
 | using EnableIfConstSpanCompatibleContainer = | 
 |     typename std::enable_if<std::is_const<T>::value && | 
 |                             !internal::IsSpan<Container>::value && | 
 |                             !internal::IsStdArray<Container>::value && | 
 |                             ContainerHasConvertibleData<Container, T>::value && | 
 |                             ContainerHasIntegralSize<Container>::value>::type; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // A span is a value type that represents an array of elements of type T. Since | 
 | // it only consists of a pointer to memory with an associated size, it is very | 
 | // light-weight. It is cheap to construct, copy, move and use spans, so that | 
 | // users are encouraged to use it as a pass-by-value parameter. A span does not | 
 | // own the underlying memory, so care must be taken to ensure that a span does | 
 | // not outlive the backing store. | 
 | // | 
 | // span is somewhat analogous to StringPiece, but with arbitrary element types, | 
 | // allowing mutation if T is non-const. | 
 | // | 
 | // span is implicitly convertible from C++ arrays, as well as most [1] | 
 | // container-like types that provide a data() and size() method (such as | 
 | // std::vector<T>). A mutable span<T> can also be implicitly converted to an | 
 | // immutable span<const T>. | 
 | // | 
 | // Consider using a span for functions that take a data pointer and size | 
 | // parameter: it allows the function to still act on an array-like type, while | 
 | // allowing the caller code to be a bit more concise. | 
 | // | 
 | // For read-only data access pass a span<const T>: the caller can supply either | 
 | // a span<const T> or a span<T>, while the callee will have a read-only view. | 
 | // For read-write access a mutable span<T> is required. | 
 | // | 
 | // Without span: | 
 | //   Read-Only: | 
 | //     // std::string HexEncode(const uint8_t* data, size_t size); | 
 | //     std::vector<uint8_t> data_buffer = GenerateData(); | 
 | //     std::string r = HexEncode(data_buffer.data(), data_buffer.size()); | 
 | // | 
 | //  Mutable: | 
 | //     // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...); | 
 | //     char str_buffer[100]; | 
 | //     SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14); | 
 | // | 
 | // With span: | 
 | //   Read-Only: | 
 | //     // std::string HexEncode(base::span<const uint8_t> data); | 
 | //     std::vector<uint8_t> data_buffer = GenerateData(); | 
 | //     std::string r = HexEncode(data_buffer); | 
 | // | 
 | //  Mutable: | 
 | //     // ssize_t SafeSNPrintf(base::span<char>, const char* fmt, Args...); | 
 | //     char str_buffer[100]; | 
 | //     SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14); | 
 | // | 
 | // Spans with "const" and pointers | 
 | // ------------------------------- | 
 | // | 
 | // Const and pointers can get confusing. Here are vectors of pointers and their | 
 | // corresponding spans (you can always make the span "more const" too): | 
 | // | 
 | //   const std::vector<int*>        =>  base::span<int* const> | 
 | //   std::vector<const int*>        =>  base::span<const int*> | 
 | //   const std::vector<const int*>  =>  base::span<const int* const> | 
 | // | 
 | // Differences from the working group proposal | 
 | // ------------------------------------------- | 
 | // | 
 | // https://wg21.link/P0122 is the latest working group proposal, Chromium | 
 | // currently implements R6. The biggest difference is span does not support a | 
 | // static extent template parameter. Other differences are documented in | 
 | // subsections below. | 
 | // | 
 | // Differences in constants and types: | 
 | // - no element_type type alias | 
 | // - no index_type type alias | 
 | // - no different_type type alias | 
 | // - no extent constant | 
 | // | 
 | // Differences from [span.cons]: | 
 | // - no constructor from a pointer range | 
 | // - no constructor from std::array | 
 | // | 
 | // Differences from [span.sub]: | 
 | // - no templated first() | 
 | // - no templated last() | 
 | // - no templated subspan() | 
 | // - using size_t instead of ptrdiff_t for indexing | 
 | // | 
 | // Differences from [span.obs]: | 
 | // - using size_t instead of ptrdiff_t to represent size() | 
 | // | 
 | // Differences from [span.elem]: | 
 | // - no operator ()() | 
 | // - using size_t instead of ptrdiff_t for indexing | 
 |  | 
 | // [span], class template span | 
 | template <typename T> | 
 | class span { | 
 |  public: | 
 |   using value_type = typename std::remove_cv<T>::type; | 
 |   using pointer = T*; | 
 |   using reference = T&; | 
 |   using iterator = T*; | 
 |   using const_iterator = const T*; | 
 |   using reverse_iterator = std::reverse_iterator<iterator>; | 
 |   using const_reverse_iterator = std::reverse_iterator<const_iterator>; | 
 |  | 
 |   // [span.cons], span constructors, copy, assignment, and destructor | 
 |   constexpr span() noexcept : data_(nullptr), size_(0) {} | 
 |   constexpr span(T* data, size_t size) noexcept : data_(data), size_(size) {} | 
 |  | 
 |   // TODO(dcheng): Implement construction from a |begin| and |end| pointer. | 
 |   template <size_t N> | 
 |   constexpr span(T (&array)[N]) noexcept : span(array, N) {} | 
 |   // TODO(dcheng): Implement construction from std::array. | 
 |   // Conversion from a container that provides |T* data()| and |integral_type | 
 |   // size()|. | 
 |   template <typename Container, | 
 |             typename = internal::EnableIfSpanCompatibleContainer<Container, T>> | 
 |   constexpr span(Container& container) | 
 |       : span(container.data(), container.size()) {} | 
 |   template < | 
 |       typename Container, | 
 |       typename = internal::EnableIfConstSpanCompatibleContainer<Container, T>> | 
 |   span(const Container& container) : span(container.data(), container.size()) {} | 
 |   constexpr span(const span& other) noexcept = default; | 
 |   // Conversions from spans of compatible types: this allows a span<T> to be | 
 |   // seamlessly used as a span<const T>, but not the other way around. | 
 |   template <typename U, typename = internal::EnableIfLegalSpanConversion<U, T>> | 
 |   constexpr span(const span<U>& other) : span(other.data(), other.size()) {} | 
 |   span& operator=(const span& other) noexcept = default; | 
 |   ~span() noexcept { | 
 |     if (!size_) { | 
 |       // Empty spans might point to byte N+1 of a N-byte object, legal for | 
 |       // C pointers but not UnownedPtrs. | 
 |       data_.ReleaseBadPointer(); | 
 |     } | 
 |   } | 
 |  | 
 |   // [span.sub], span subviews | 
 |   const span first(size_t count) const { | 
 |     CHECK(count <= size_); | 
 |     return span(data_.Get(), count); | 
 |   } | 
 |  | 
 |   const span last(size_t count) const { | 
 |     CHECK(count <= size_); | 
 |     return span(data_.Get() + (size_ - count), count); | 
 |   } | 
 |  | 
 |   const span subspan(size_t pos, size_t count = dynamic_extent) const { | 
 |     CHECK(pos <= size_); | 
 |     CHECK(count == dynamic_extent || count <= size_ - pos); | 
 |     return span(data_.Get() + pos, | 
 |                 count == dynamic_extent ? size_ - pos : count); | 
 |   } | 
 |  | 
 |   // [span.obs], span observers | 
 |   constexpr size_t size() const noexcept { return size_; } | 
 |   constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); } | 
 |   constexpr bool empty() const noexcept { return size_ == 0; } | 
 |  | 
 |   // [span.elem], span element access | 
 |   T& operator[](size_t index) const noexcept { | 
 |     CHECK(index < size_); | 
 |     return data_.Get()[index]; | 
 |   } | 
 |  | 
 |   constexpr T& front() const noexcept { | 
 |     CHECK(!empty()); | 
 |     return *data(); | 
 |   } | 
 |  | 
 |   constexpr T& back() const noexcept { | 
 |     CHECK(!empty()); | 
 |     return *(data() + size() - 1); | 
 |   } | 
 |  | 
 |   constexpr T* data() const noexcept { return data_.Get(); } | 
 |  | 
 |   // [span.iter], span iterator support | 
 |   constexpr iterator begin() const noexcept { return data_.Get(); } | 
 |   constexpr iterator end() const noexcept { return data_.Get() + size_; } | 
 |  | 
 |   constexpr const_iterator cbegin() const noexcept { return begin(); } | 
 |   constexpr const_iterator cend() const noexcept { return end(); } | 
 |  | 
 |   constexpr reverse_iterator rbegin() const noexcept { | 
 |     return reverse_iterator(end()); | 
 |   } | 
 |   constexpr reverse_iterator rend() const noexcept { | 
 |     return reverse_iterator(begin()); | 
 |   } | 
 |  | 
 |   constexpr const_reverse_iterator crbegin() const noexcept { | 
 |     return const_reverse_iterator(cend()); | 
 |   } | 
 |   constexpr const_reverse_iterator crend() const noexcept { | 
 |     return const_reverse_iterator(cbegin()); | 
 |   } | 
 |  | 
 |  private: | 
 |   UnownedPtr<T> data_; | 
 |   size_t size_; | 
 | }; | 
 |  | 
 | // [span.comparison], span comparison operators | 
 | // Relational operators. Equality is a element-wise comparison. | 
 | template <typename T> | 
 | constexpr bool operator==(span<T> lhs, span<T> rhs) noexcept { | 
 |   return lhs.size() == rhs.size() && | 
 |          std::equal(lhs.cbegin(), lhs.cend(), rhs.cbegin()); | 
 | } | 
 |  | 
 | template <typename T> | 
 | constexpr bool operator!=(span<T> lhs, span<T> rhs) noexcept { | 
 |   return !(lhs == rhs); | 
 | } | 
 |  | 
 | template <typename T> | 
 | constexpr bool operator<(span<T> lhs, span<T> rhs) noexcept { | 
 |   return std::lexicographical_compare(lhs.cbegin(), lhs.cend(), rhs.cbegin(), | 
 |                                       rhs.cend()); | 
 | } | 
 |  | 
 | template <typename T> | 
 | constexpr bool operator<=(span<T> lhs, span<T> rhs) noexcept { | 
 |   return !(rhs < lhs); | 
 | } | 
 |  | 
 | template <typename T> | 
 | constexpr bool operator>(span<T> lhs, span<T> rhs) noexcept { | 
 |   return rhs < lhs; | 
 | } | 
 |  | 
 | template <typename T> | 
 | constexpr bool operator>=(span<T> lhs, span<T> rhs) noexcept { | 
 |   return !(lhs < rhs); | 
 | } | 
 |  | 
 | // [span.objectrep], views of object representation | 
 | template <typename T> | 
 | span<const uint8_t> as_bytes(span<T> s) noexcept { | 
 |   return {reinterpret_cast<const uint8_t*>(s.data()), s.size_bytes()}; | 
 | } | 
 |  | 
 | template <typename T, | 
 |           typename U = typename std::enable_if<!std::is_const<T>::value>::type> | 
 | span<uint8_t> as_writable_bytes(span<T> s) noexcept { | 
 |   return {reinterpret_cast<uint8_t*>(s.data()), s.size_bytes()}; | 
 | } | 
 |  | 
 | // Type-deducing helpers for constructing a span. | 
 | template <typename T> | 
 | constexpr span<T> make_span(T* data, size_t size) noexcept { | 
 |   return span<T>(data, size); | 
 | } | 
 |  | 
 | template <typename T, size_t N> | 
 | constexpr span<T> make_span(T (&array)[N]) noexcept { | 
 |   return span<T>(array); | 
 | } | 
 |  | 
 | template <typename Container, | 
 |           typename T = typename Container::value_type, | 
 |           typename = internal::EnableIfSpanCompatibleContainer<Container, T>> | 
 | constexpr span<T> make_span(Container& container) { | 
 |   return span<T>(container); | 
 | } | 
 |  | 
 | template < | 
 |     typename Container, | 
 |     typename T = typename std::add_const<typename Container::value_type>::type, | 
 |     typename = internal::EnableIfConstSpanCompatibleContainer<Container, T>> | 
 | constexpr span<T> make_span(const Container& container) { | 
 |   return span<T>(container); | 
 | } | 
 |  | 
 | }  // namespace pdfium | 
 |  | 
 | #endif  // THIRD_PARTY_BASE_SPAN_H_ |