blob: 3eb8f624fed7f520c1ccb83a8ce580bc5c64e5cb [file] [log] [blame] [edit]
//---------------------------------------------------------------------------------
//
// Little Color Management System
// Copyright (c) 1998-2022 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//
#include "lcms2_internal.h"
//----------------------------------------------------------------------------------
// Optimization for 8 bits, Shaper-CLUT (3 inputs only)
typedef struct {
cmsContext ContextID;
const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer.
cmsUInt16Number rx[256], ry[256], rz[256];
cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data
} Prelin8Data;
// Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
typedef struct {
cmsContext ContextID;
// Number of channels
cmsUInt32Number nInputs;
cmsUInt32Number nOutputs;
_cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
_cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid
const cmsInterpParams* CLUTparams; // (not-owned pointer)
_cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer)
cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer)
} Prelin16Data;
// Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits!
#define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
typedef struct {
cmsContext ContextID;
cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0)
cmsS1Fixed14Number Shaper1G[256];
cmsS1Fixed14Number Shaper1B[256];
cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that)
cmsS1Fixed14Number Off[3];
cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
cmsUInt16Number Shaper2G[16385];
cmsUInt16Number Shaper2B[16385];
} MatShaper8Data;
// Curves, optimization is shared between 8 and 16 bits
typedef struct {
cmsContext ContextID;
cmsUInt32Number nCurves; // Number of curves
cmsUInt32Number nElements; // Elements in curves
cmsUInt16Number** Curves; // Points to a dynamically allocated array
} Curves16Data;
// Simple optimizations ----------------------------------------------------------------------------------------------------------
// Clamp a fixed point integer to signed 28 bits to avoid overflow in
// calculations. Clamp is intended for use with colorants, requiring one bit
// for a colorant and another two bits to avoid overflow when combining the
// colors.
cmsINLINE cmsS1Fixed14Number _FixedClamp(cmsS1Fixed14Number n) {
const cmsS1Fixed14Number max_positive = 268435455; // 0x0FFFFFFF;
const cmsS1Fixed14Number max_negative = -268435456; // 0xF0000000;
// Normally expect the provided number to be in the range [0..1] (but in
// fixed 1.14 format), so can perform a quick check for this typical case
// to reduce number of compares.
const cmsS1Fixed14Number typical_range_mask = 0xFFFF8000;
if (!(n & typical_range_mask))
return n;
if (n < max_negative)
return max_negative;
if (n > max_positive)
return max_positive;
return n;
}
// Perform one row of matrix multiply with translation for MatShaperEval16().
cmsINLINE cmsInt64Number _MatShaperEvaluateRow(cmsS1Fixed14Number* mat,
cmsS1Fixed14Number off,
cmsS1Fixed14Number r,
cmsS1Fixed14Number g,
cmsS1Fixed14Number b) {
return ((cmsInt64Number)mat[0] * r +
(cmsInt64Number)mat[1] * g +
(cmsInt64Number)mat[2] * b +
off + 0x2000) >> 14;
}
// Remove an element in linked chain
static
void _RemoveElement(cmsStage** head)
{
cmsStage* mpe = *head;
cmsStage* next = mpe ->Next;
*head = next;
cmsStageFree(mpe);
}
// Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
static
cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
{
cmsStage** pt = &Lut ->Elements;
cmsBool AnyOpt = FALSE;
while (*pt != NULL) {
if ((*pt) ->Implements == UnaryOp) {
_RemoveElement(pt);
AnyOpt = TRUE;
}
else
pt = &((*pt) -> Next);
}
return AnyOpt;
}
// Same, but only if two adjacent elements are found
static
cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
{
cmsStage** pt1;
cmsStage** pt2;
cmsBool AnyOpt = FALSE;
pt1 = &Lut ->Elements;
if (*pt1 == NULL) return AnyOpt;
while (*pt1 != NULL) {
pt2 = &((*pt1) -> Next);
if (*pt2 == NULL) return AnyOpt;
if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
_RemoveElement(pt2);
_RemoveElement(pt1);
AnyOpt = TRUE;
}
else
pt1 = &((*pt1) -> Next);
}
return AnyOpt;
}
static
cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
{
return fabs(b - a) < 0.00001f;
}
static
cmsBool isFloatMatrixIdentity(const cmsMAT3* a)
{
cmsMAT3 Identity;
int i, j;
_cmsMAT3identity(&Identity);
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
return TRUE;
}
// if two adjacent matrices are found, multiply them.
static
cmsBool _MultiplyMatrix(cmsPipeline* Lut)
{
cmsStage** pt1;
cmsStage** pt2;
cmsStage* chain;
cmsBool AnyOpt = FALSE;
pt1 = &Lut->Elements;
if (*pt1 == NULL) return AnyOpt;
while (*pt1 != NULL) {
pt2 = &((*pt1)->Next);
if (*pt2 == NULL) return AnyOpt;
if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
// Get both matrices
_cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
_cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
cmsMAT3 res;
// Input offset and output offset should be zero to use this optimization
if (m1->Offset != NULL || m2 ->Offset != NULL ||
cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||
cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
return FALSE;
// Multiply both matrices to get the result
_cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
// Get the next in chain after the matrices
chain = (*pt2)->Next;
// Remove both matrices
_RemoveElement(pt2);
_RemoveElement(pt1);
// Now what if the result is a plain identity?
if (!isFloatMatrixIdentity(&res)) {
// We can not get rid of full matrix
cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
if (Multmat == NULL) return FALSE; // Should never happen
// Recover the chain
Multmat->Next = chain;
*pt1 = Multmat;
}
AnyOpt = TRUE;
}
else
pt1 = &((*pt1)->Next);
}
return AnyOpt;
}
// Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
// by a v4 to v2 and vice-versa. The elements are then discarded.
static
cmsBool PreOptimize(cmsPipeline* Lut)
{
cmsBool AnyOpt = FALSE, Opt;
do {
Opt = FALSE;
// Remove all identities
Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
// Remove XYZ2Lab followed by Lab2XYZ
Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
// Remove Lab2XYZ followed by XYZ2Lab
Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
// Remove V4 to V2 followed by V2 to V4
Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
// Remove V2 to V4 followed by V4 to V2
Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
// Remove float pcs Lab conversions
Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
// Remove float pcs Lab conversions
Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
// Simplify matrix.
Opt |= _MultiplyMatrix(Lut);
if (Opt) AnyOpt = TRUE;
} while (Opt);
return AnyOpt;
}
static
void Eval16nop1D(CMSREGISTER const cmsUInt16Number Input[],
CMSREGISTER cmsUInt16Number Output[],
CMSREGISTER const struct _cms_interp_struc* p)
{
Output[0] = Input[0];
cmsUNUSED_PARAMETER(p);
}
static
void PrelinEval16(CMSREGISTER const cmsUInt16Number Input[],
CMSREGISTER cmsUInt16Number Output[],
CMSREGISTER const void* D)
{
Prelin16Data* p16 = (Prelin16Data*) D;
cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS];
cmsUInt16Number StageDEF[cmsMAXCHANNELS];
cmsUInt32Number i;
for (i=0; i < p16 ->nInputs; i++) {
p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
}
p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
for (i=0; i < p16 ->nOutputs; i++) {
p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
}
}
static
void PrelinOpt16free(cmsContext ContextID, void* ptr)
{
Prelin16Data* p16 = (Prelin16Data*) ptr;
_cmsFree(ContextID, p16 ->EvalCurveOut16);
_cmsFree(ContextID, p16 ->ParamsCurveOut16);
_cmsFree(ContextID, p16);
}
static
void* Prelin16dup(cmsContext ContextID, const void* ptr)
{
Prelin16Data* p16 = (Prelin16Data*) ptr;
Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
if (Duped == NULL) return NULL;
Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
return Duped;
}
static
Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
const cmsInterpParams* ColorMap,
cmsUInt32Number nInputs, cmsToneCurve** In,
cmsUInt32Number nOutputs, cmsToneCurve** Out )
{
cmsUInt32Number i;
Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
if (p16 == NULL) return NULL;
p16 ->nInputs = nInputs;
p16 ->nOutputs = nOutputs;
for (i=0; i < nInputs; i++) {
if (In == NULL) {
p16 -> ParamsCurveIn16[i] = NULL;
p16 -> EvalCurveIn16[i] = Eval16nop1D;
}
else {
p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
}
}
p16 ->CLUTparams = ColorMap;
p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16;
p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
if (p16->EvalCurveOut16 == NULL)
{
_cmsFree(ContextID, p16);
return NULL;
}
p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
if (p16->ParamsCurveOut16 == NULL)
{
_cmsFree(ContextID, p16->EvalCurveOut16);
_cmsFree(ContextID, p16);
return NULL;
}
for (i=0; i < nOutputs; i++) {
if (Out == NULL) {
p16 ->ParamsCurveOut16[i] = NULL;
p16 -> EvalCurveOut16[i] = Eval16nop1D;
}
else {
p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
}
}
return p16;
}
// Resampling ---------------------------------------------------------------------------------
#define PRELINEARIZATION_POINTS 4096
// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
// almost any transform. We use floating point precision and then convert from floating point to 16 bits.
static
cmsInt32Number XFormSampler16(CMSREGISTER const cmsUInt16Number In[],
CMSREGISTER cmsUInt16Number Out[],
CMSREGISTER void* Cargo)
{
cmsPipeline* Lut = (cmsPipeline*) Cargo;
cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
cmsUInt32Number i;
_cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
_cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
// From 16 bit to floating point
for (i=0; i < Lut ->InputChannels; i++)
InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
// Evaluate in floating point
cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
// Back to 16 bits representation
for (i=0; i < Lut ->OutputChannels; i++)
Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
// Always succeed
return TRUE;
}
// Try to see if the curves of a given MPE are linear
static
cmsBool AllCurvesAreLinear(cmsStage* mpe)
{
cmsToneCurve** Curves;
cmsUInt32Number i, n;
Curves = _cmsStageGetPtrToCurveSet(mpe);
if (Curves == NULL) return FALSE;
n = cmsStageOutputChannels(mpe);
for (i=0; i < n; i++) {
if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
}
return TRUE;
}
// This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
// is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
static
cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn)
{
_cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
cmsInterpParams* p16 = Grid ->Params;
cmsFloat64Number px, py, pz, pw;
int x0, y0, z0, w0;
int i, index;
if (CLUT -> Type != cmsSigCLutElemType) {
cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
return FALSE;
}
if (nChannelsIn == 4) {
px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
x0 = (int) floor(px);
y0 = (int) floor(py);
z0 = (int) floor(pz);
w0 = (int) floor(pw);
if (((px - x0) != 0) ||
((py - y0) != 0) ||
((pz - z0) != 0) ||
((pw - w0) != 0)) return FALSE; // Not on exact node
index = (int) p16 -> opta[3] * x0 +
(int) p16 -> opta[2] * y0 +
(int) p16 -> opta[1] * z0 +
(int) p16 -> opta[0] * w0;
}
else
if (nChannelsIn == 3) {
px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
x0 = (int) floor(px);
y0 = (int) floor(py);
z0 = (int) floor(pz);
if (((px - x0) != 0) ||
((py - y0) != 0) ||
((pz - z0) != 0)) return FALSE; // Not on exact node
index = (int) p16 -> opta[2] * x0 +
(int) p16 -> opta[1] * y0 +
(int) p16 -> opta[0] * z0;
}
else
if (nChannelsIn == 1) {
px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
x0 = (int) floor(px);
if (((px - x0) != 0)) return FALSE; // Not on exact node
index = (int) p16 -> opta[0] * x0;
}
else {
cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
return FALSE;
}
for (i = 0; i < (int) nChannelsOut; i++)
Grid->Tab.T[index + i] = Value[i];
return TRUE;
}
// Auxiliary, to see if two values are equal or very different
static
cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
{
cmsUInt32Number i;
for (i=0; i < n; i++) {
if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremely different that the fixup should be avoided
if (White1[i] != White2[i]) return FALSE;
}
return TRUE;
}
// Locate the node for the white point and fix it to pure white in order to avoid scum dot.
static
cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
{
cmsUInt16Number *WhitePointIn, *WhitePointOut;
cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
cmsUInt32Number i, nOuts, nIns;
cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
if (!_cmsEndPointsBySpace(EntryColorSpace,
&WhitePointIn, NULL, &nIns)) return FALSE;
if (!_cmsEndPointsBySpace(ExitColorSpace,
&WhitePointOut, NULL, &nOuts)) return FALSE;
// It needs to be fixed?
if (Lut ->InputChannels != nIns) return FALSE;
if (Lut ->OutputChannels != nOuts) return FALSE;
cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
// Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
return FALSE;
// We need to interpolate white points of both, pre and post curves
if (PreLin) {
cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
for (i=0; i < nIns; i++) {
WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
}
}
else {
for (i=0; i < nIns; i++)
WhiteIn[i] = WhitePointIn[i];
}
// If any post-linearization, we need to find how is represented white before the curve, do
// a reverse interpolation in this case.
if (PostLin) {
cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
for (i=0; i < nOuts; i++) {
cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
if (InversePostLin == NULL) {
WhiteOut[i] = WhitePointOut[i];
} else {
WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
cmsFreeToneCurve(InversePostLin);
}
}
}
else {
for (i=0; i < nOuts; i++)
WhiteOut[i] = WhitePointOut[i];
}
// Ok, proceed with patching. May fail and we don't care if it fails
PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
return TRUE;
}
// -----------------------------------------------------------------------------------------------------------------------------------------------
// This function creates simple LUT from complex ones. The generated LUT has an optional set of
// prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
// These curves have to exist in the original LUT in order to be used in the simplified output.
// Caller may also use the flags to allow this feature.
// LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
// This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
// -----------------------------------------------------------------------------------------------------------------------------------------------
static
cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
{
cmsPipeline* Src = NULL;
cmsPipeline* Dest = NULL;
cmsStage* CLUT;
cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
cmsUInt32Number nGridPoints;
cmsColorSpaceSignature ColorSpace, OutputColorSpace;
cmsStage *NewPreLin = NULL;
cmsStage *NewPostLin = NULL;
_cmsStageCLutData* DataCLUT;
cmsToneCurve** DataSetIn;
cmsToneCurve** DataSetOut;
Prelin16Data* p16;
// This is a lossy optimization! does not apply in floating-point cases
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
// Color space must be specified
if (ColorSpace == (cmsColorSpaceSignature)0 ||
OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
// For empty LUTs, 2 points are enough
if (cmsPipelineStageCount(*Lut) == 0)
nGridPoints = 2;
Src = *Lut;
// Allocate an empty LUT
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
if (!Dest) return FALSE;
// Prelinearization tables are kept unless indicated by flags
if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
// Get a pointer to the prelinearization element
cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
// Check if suitable
if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
// Maybe this is a linear tram, so we can avoid the whole stuff
if (!AllCurvesAreLinear(PreLin)) {
// All seems ok, proceed.
NewPreLin = cmsStageDup(PreLin);
if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
goto Error;
// Remove prelinearization. Since we have duplicated the curve
// in destination LUT, the sampling should be applied after this stage.
cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
}
}
}
// Allocate the CLUT
CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
if (CLUT == NULL) goto Error;
// Add the CLUT to the destination LUT
if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
goto Error;
}
// Postlinearization tables are kept unless indicated by flags
if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
// Get a pointer to the postlinearization if present
cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
// Check if suitable
if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
// Maybe this is a linear tram, so we can avoid the whole stuff
if (!AllCurvesAreLinear(PostLin)) {
// All seems ok, proceed.
NewPostLin = cmsStageDup(PostLin);
if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
goto Error;
// In destination LUT, the sampling should be applied after this stage.
cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
}
}
}
// Now its time to do the sampling. We have to ignore pre/post linearization
// The source LUT without pre/post curves is passed as parameter.
if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
Error:
// Ops, something went wrong, Restore stages
if (KeepPreLin != NULL) {
if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
_cmsAssert(0); // This never happens
}
}
if (KeepPostLin != NULL) {
if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) {
_cmsAssert(0); // This never happens
}
}
cmsPipelineFree(Dest);
return FALSE;
}
// Done.
if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
cmsPipelineFree(Src);
DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
if (NewPreLin == NULL) DataSetIn = NULL;
else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
if (NewPostLin == NULL) DataSetOut = NULL;
else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
if (DataSetIn == NULL && DataSetOut == NULL) {
_cmsPipelineSetOptimizationParameters(Dest, (_cmsPipelineEval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
}
else {
p16 = PrelinOpt16alloc(Dest ->ContextID,
DataCLUT ->Params,
Dest ->InputChannels,
DataSetIn,
Dest ->OutputChannels,
DataSetOut);
_cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
}
// Don't fix white on absolute colorimetric
if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
*dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
}
*Lut = Dest;
return TRUE;
cmsUNUSED_PARAMETER(Intent);
}
// -----------------------------------------------------------------------------------------------------------------------------------------------
// Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
// Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
// for RGB transforms. See the paper for more details
// -----------------------------------------------------------------------------------------------------------------------------------------------
// Normalize endpoints by slope limiting max and min. This assures endpoints as well.
// Descending curves are handled as well.
static
void SlopeLimiting(cmsToneCurve* g)
{
int BeginVal, EndVal;
int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2%
int AtEnd = (int) g ->nEntries - AtBegin - 1; // And 98%
cmsFloat64Number Val, Slope, beta;
int i;
if (cmsIsToneCurveDescending(g)) {
BeginVal = 0xffff; EndVal = 0;
}
else {
BeginVal = 0; EndVal = 0xffff;
}
// Compute slope and offset for begin of curve
Val = g ->Table16[AtBegin];
Slope = (Val - BeginVal) / AtBegin;
beta = Val - Slope * AtBegin;
for (i=0; i < AtBegin; i++)
g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
// Compute slope and offset for the end
Val = g ->Table16[AtEnd];
Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases
beta = Val - Slope * AtEnd;
for (i = AtEnd; i < (int) g ->nEntries; i++)
g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
}
// Precomputes tables for 8-bit on input devicelink.
static
Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
{
int i;
cmsUInt16Number Input[3];
cmsS15Fixed16Number v1, v2, v3;
Prelin8Data* p8;
p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
if (p8 == NULL) return NULL;
// Since this only works for 8 bit input, values comes always as x * 257,
// we can safely take msb byte (x << 8 + x)
for (i=0; i < 256; i++) {
if (G != NULL) {
// Get 16-bit representation
Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
}
else {
Input[0] = FROM_8_TO_16(i);
Input[1] = FROM_8_TO_16(i);
Input[2] = FROM_8_TO_16(i);
}
// Move to 0..1.0 in fixed domain
v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0]));
v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1]));
v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2]));
// Store the precalculated table of nodes
p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
// Store the precalculated table of offsets
p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
}
p8 ->ContextID = ContextID;
p8 ->p = p;
return p8;
}
static
void Prelin8free(cmsContext ContextID, void* ptr)
{
_cmsFree(ContextID, ptr);
}
static
void* Prelin8dup(cmsContext ContextID, const void* ptr)
{
return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
}
// A optimized interpolation for 8-bit input.
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
static CMS_NO_SANITIZE
void PrelinEval8(CMSREGISTER const cmsUInt16Number Input[],
CMSREGISTER cmsUInt16Number Output[],
CMSREGISTER const void* D)
{
cmsUInt8Number r, g, b;
cmsS15Fixed16Number rx, ry, rz;
cmsS15Fixed16Number c0, c1, c2, c3, Rest;
int OutChan;
CMSREGISTER cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
Prelin8Data* p8 = (Prelin8Data*) D;
CMSREGISTER const cmsInterpParams* p = p8 ->p;
int TotalOut = (int) p -> nOutputs;
const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
r = (cmsUInt8Number) (Input[0] >> 8);
g = (cmsUInt8Number) (Input[1] >> 8);
b = (cmsUInt8Number) (Input[2] >> 8);
X0 = (cmsS15Fixed16Number) p8->X0[r];
Y0 = (cmsS15Fixed16Number) p8->Y0[g];
Z0 = (cmsS15Fixed16Number) p8->Z0[b];
rx = p8 ->rx[r];
ry = p8 ->ry[g];
rz = p8 ->rz[b];
X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 : p ->opta[2]);
Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 : p ->opta[1]);
Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 : p ->opta[0]);
// These are the 6 Tetrahedral
for (OutChan=0; OutChan < TotalOut; OutChan++) {
c0 = DENS(X0, Y0, Z0);
if (rx >= ry && ry >= rz)
{
c1 = DENS(X1, Y0, Z0) - c0;
c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
}
else
if (rx >= rz && rz >= ry)
{
c1 = DENS(X1, Y0, Z0) - c0;
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
}
else
if (rz >= rx && rx >= ry)
{
c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
c3 = DENS(X0, Y0, Z1) - c0;
}
else
if (ry >= rx && rx >= rz)
{
c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
c2 = DENS(X0, Y1, Z0) - c0;
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
}
else
if (ry >= rz && rz >= rx)
{
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
c2 = DENS(X0, Y1, Z0) - c0;
c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
}
else
if (rz >= ry && ry >= rx)
{
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
c3 = DENS(X0, Y0, Z1) - c0;
}
else {
c1 = c2 = c3 = 0;
}
Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16));
}
}
#undef DENS
// Curves that contain wide empty areas are not optimizeable
static
cmsBool IsDegenerated(const cmsToneCurve* g)
{
cmsUInt32Number i, Zeros = 0, Poles = 0;
cmsUInt32Number nEntries = g ->nEntries;
for (i=0; i < nEntries; i++) {
if (g ->Table16[i] == 0x0000) Zeros++;
if (g ->Table16[i] == 0xffff) Poles++;
}
if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables
if (Zeros > (nEntries / 20)) return TRUE; // Degenerated, many zeros
if (Poles > (nEntries / 20)) return TRUE; // Degenerated, many poles
return FALSE;
}
// --------------------------------------------------------------------------------------------------------------
// We need xput over here
static
cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
{
cmsPipeline* OriginalLut;
cmsUInt32Number nGridPoints;
cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
cmsUInt32Number t, i;
cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
cmsBool lIsSuitable, lIsLinear;
cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
cmsStage* OptimizedCLUTmpe;
cmsColorSpaceSignature ColorSpace, OutputColorSpace;
cmsStage* OptimizedPrelinMpe;
cmsToneCurve** OptimizedPrelinCurves;
_cmsStageCLutData* OptimizedPrelinCLUT;
// This is a lossy optimization! does not apply in floating-point cases
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
// Only on chunky RGB
if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE;
if (T_PLANAR(*InputFormat)) return FALSE;
if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
if (T_PLANAR(*OutputFormat)) return FALSE;
// On 16 bits, user has to specify the feature
if (!_cmsFormatterIs8bit(*InputFormat)) {
if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
}
OriginalLut = *Lut;
ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
// Color space must be specified
if (ColorSpace == (cmsColorSpaceSignature)0 ||
OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
// Empty gamma containers
memset(Trans, 0, sizeof(Trans));
memset(TransReverse, 0, sizeof(TransReverse));
// If the last stage of the original lut are curves, and those curves are
// degenerated, it is likely the transform is squeezing and clipping
// the output from previous CLUT. We cannot optimize this case
{
cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
if (last == NULL) goto Error;
if (cmsStageType(last) == cmsSigCurveSetElemType) {
_cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
for (i = 0; i < Data->nCurves; i++) {
if (IsDegenerated(Data->TheCurves[i]))
goto Error;
}
}
}
for (t = 0; t < OriginalLut ->InputChannels; t++) {
Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
if (Trans[t] == NULL) goto Error;
}
// Populate the curves
for (i=0; i < PRELINEARIZATION_POINTS; i++) {
v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
// Feed input with a gray ramp
for (t=0; t < OriginalLut ->InputChannels; t++)
In[t] = v;
// Evaluate the gray value
cmsPipelineEvalFloat(In, Out, OriginalLut);
// Store result in curve
for (t=0; t < OriginalLut ->InputChannels; t++)
Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
}
// Slope-limit the obtained curves
for (t = 0; t < OriginalLut ->InputChannels; t++)
SlopeLimiting(Trans[t]);
// Check for validity
lIsSuitable = TRUE;
lIsLinear = TRUE;
for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
// Exclude if already linear
if (!cmsIsToneCurveLinear(Trans[t]))
lIsLinear = FALSE;
// Exclude if non-monotonic
if (!cmsIsToneCurveMonotonic(Trans[t]))
lIsSuitable = FALSE;
if (IsDegenerated(Trans[t]))
lIsSuitable = FALSE;
}
// If it is not suitable, just quit
if (!lIsSuitable) goto Error;
// Invert curves if possible
for (t = 0; t < OriginalLut ->InputChannels; t++) {
TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
if (TransReverse[t] == NULL) goto Error;
}
// Now inset the reversed curves at the begin of transform
LutPlusCurves = cmsPipelineDup(OriginalLut);
if (LutPlusCurves == NULL) goto Error;
if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
goto Error;
// Create the result LUT
OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
if (OptimizedLUT == NULL) goto Error;
OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
// Create and insert the curves at the beginning
if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
goto Error;
// Allocate the CLUT for result
OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
// Add the CLUT to the destination LUT
if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
goto Error;
// Resample the LUT
if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
// Free resources
for (t = 0; t < OriginalLut ->InputChannels; t++) {
if (Trans[t]) cmsFreeToneCurve(Trans[t]);
if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
}
cmsPipelineFree(LutPlusCurves);
OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
// Set the evaluator if 8-bit
if (_cmsFormatterIs8bit(*InputFormat)) {
Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
OptimizedPrelinCLUT ->Params,
OptimizedPrelinCurves);
if (p8 == NULL) return FALSE;
_cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
}
else
{
Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
OptimizedPrelinCLUT ->Params,
3, OptimizedPrelinCurves, 3, NULL);
if (p16 == NULL) return FALSE;
_cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
}
// Don't fix white on absolute colorimetric
if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
*dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
return FALSE;
}
}
// And return the obtained LUT
cmsPipelineFree(OriginalLut);
*Lut = OptimizedLUT;
return TRUE;
Error:
for (t = 0; t < OriginalLut ->InputChannels; t++) {
if (Trans[t]) cmsFreeToneCurve(Trans[t]);
if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
}
if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
return FALSE;
cmsUNUSED_PARAMETER(Intent);
cmsUNUSED_PARAMETER(lIsLinear);
}
// Curves optimizer ------------------------------------------------------------------------------------------------------------------
static
void CurvesFree(cmsContext ContextID, void* ptr)
{
Curves16Data* Data = (Curves16Data*) ptr;
cmsUInt32Number i;
for (i=0; i < Data -> nCurves; i++) {
_cmsFree(ContextID, Data ->Curves[i]);
}
_cmsFree(ContextID, Data ->Curves);
_cmsFree(ContextID, ptr);
}
static
void* CurvesDup(cmsContext ContextID, const void* ptr)
{
Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
cmsUInt32Number i;
if (Data == NULL) return NULL;
Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
for (i=0; i < Data -> nCurves; i++) {
Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
}
return (void*) Data;
}
// Precomputes tables for 8-bit on input devicelink.
static
Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G)
{
cmsUInt32Number i, j;
Curves16Data* c16;
c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
if (c16 == NULL) return NULL;
c16 ->nCurves = nCurves;
c16 ->nElements = nElements;
c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
if (c16->Curves == NULL) {
_cmsFree(ContextID, c16);
return NULL;
}
for (i=0; i < nCurves; i++) {
c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
if (c16->Curves[i] == NULL) {
for (j=0; j < i; j++) {
_cmsFree(ContextID, c16->Curves[j]);
}
_cmsFree(ContextID, c16->Curves);
_cmsFree(ContextID, c16);
return NULL;
}
if (nElements == 256U) {
for (j=0; j < nElements; j++) {
c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
}
}
else {
for (j=0; j < nElements; j++) {
c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
}
}
}
return c16;
}
static
void FastEvaluateCurves8(CMSREGISTER const cmsUInt16Number In[],
CMSREGISTER cmsUInt16Number Out[],
CMSREGISTER const void* D)
{
Curves16Data* Data = (Curves16Data*) D;
int x;
cmsUInt32Number i;
for (i=0; i < Data ->nCurves; i++) {
x = (In[i] >> 8);
Out[i] = Data -> Curves[i][x];
}
}
static
void FastEvaluateCurves16(CMSREGISTER const cmsUInt16Number In[],
CMSREGISTER cmsUInt16Number Out[],
CMSREGISTER const void* D)
{
Curves16Data* Data = (Curves16Data*) D;
cmsUInt32Number i;
for (i=0; i < Data ->nCurves; i++) {
Out[i] = Data -> Curves[i][In[i]];
}
}
static
void FastIdentity16(CMSREGISTER const cmsUInt16Number In[],
CMSREGISTER cmsUInt16Number Out[],
CMSREGISTER const void* D)
{
cmsPipeline* Lut = (cmsPipeline*) D;
cmsUInt32Number i;
for (i=0; i < Lut ->InputChannels; i++) {
Out[i] = In[i];
}
}
// If the target LUT holds only curves, the optimization procedure is to join all those
// curves together. That only works on curves and does not work on matrices.
static
cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
{
cmsToneCurve** GammaTables = NULL;
cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
cmsUInt32Number i, j;
cmsPipeline* Src = *Lut;
cmsPipeline* Dest = NULL;
cmsStage* mpe;
cmsStage* ObtainedCurves = NULL;
// This is a lossy optimization! does not apply in floating-point cases
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
// Only curves in this LUT?
for (mpe = cmsPipelineGetPtrToFirstStage(Src);
mpe != NULL;
mpe = cmsStageNext(mpe)) {
if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
}
// Allocate an empty LUT
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
if (Dest == NULL) return FALSE;
// Create target curves
GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
if (GammaTables == NULL) goto Error;
for (i=0; i < Src ->InputChannels; i++) {
GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
if (GammaTables[i] == NULL) goto Error;
}
// Compute 16 bit result by using floating point
for (i=0; i < PRELINEARIZATION_POINTS; i++) {
for (j=0; j < Src ->InputChannels; j++)
InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
cmsPipelineEvalFloat(InFloat, OutFloat, Src);
for (j=0; j < Src ->InputChannels; j++)
GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
}
ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
if (ObtainedCurves == NULL) goto Error;
for (i=0; i < Src ->InputChannels; i++) {
cmsFreeToneCurve(GammaTables[i]);
GammaTables[i] = NULL;
}
if (GammaTables != NULL) {
_cmsFree(Src->ContextID, GammaTables);
GammaTables = NULL;
}
// Maybe the curves are linear at the end
if (!AllCurvesAreLinear(ObtainedCurves)) {
_cmsStageToneCurvesData* Data;
if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
goto Error;
Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
ObtainedCurves = NULL;
// If the curves are to be applied in 8 bits, we can save memory
if (_cmsFormatterIs8bit(*InputFormat)) {
Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
if (c16 == NULL) goto Error;
*dwFlags |= cmsFLAGS_NOCACHE;
_cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
}
else {
Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
if (c16 == NULL) goto Error;
*dwFlags |= cmsFLAGS_NOCACHE;
_cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
}
}
else {
// LUT optimizes to nothing. Set the identity LUT
cmsStageFree(ObtainedCurves);
ObtainedCurves = NULL;
if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
goto Error;
*dwFlags |= cmsFLAGS_NOCACHE;
_cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
}
// We are done.
cmsPipelineFree(Src);
*Lut = Dest;
return TRUE;
Error:
if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
if (GammaTables != NULL) {
for (i=0; i < Src ->InputChannels; i++) {
if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
}
_cmsFree(Src ->ContextID, GammaTables);
}
if (Dest != NULL) cmsPipelineFree(Dest);
return FALSE;
cmsUNUSED_PARAMETER(Intent);
cmsUNUSED_PARAMETER(InputFormat);
cmsUNUSED_PARAMETER(OutputFormat);
cmsUNUSED_PARAMETER(dwFlags);
}
// -------------------------------------------------------------------------------------------------------------------------------------
// LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
static
void FreeMatShaper(cmsContext ContextID, void* Data)
{
if (Data != NULL) _cmsFree(ContextID, Data);
}
static
void* DupMatShaper(cmsContext ContextID, const void* Data)
{
return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
}
// A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
// to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
// in total about 50K, and the performance boost is huge!
static
void MatShaperEval16(CMSREGISTER const cmsUInt16Number In[],
CMSREGISTER cmsUInt16Number Out[],
CMSREGISTER const void* D)
{
MatShaper8Data* p = (MatShaper8Data*) D;
cmsS1Fixed14Number r, g, b;
cmsInt64Number l1, l2, l3;
cmsUInt32Number ri, gi, bi;
// In this case (and only in this case!) we can use this simplification since
// In[] is assured to come from a 8 bit number. (a << 8 | a)
ri = In[0] & 0xFFU;
gi = In[1] & 0xFFU;
bi = In[2] & 0xFFU;
// Across first shaper, which also converts to 1.14 fixed point
r = _FixedClamp(p->Shaper1R[ri]);
g = _FixedClamp(p->Shaper1G[gi]);
b = _FixedClamp(p->Shaper1B[bi]);
// Evaluate the matrix in 1.14 fixed point
l1 = _MatShaperEvaluateRow(p->Mat[0], p->Off[0], r, g, b);
l2 = _MatShaperEvaluateRow(p->Mat[1], p->Off[1], r, g, b);
l3 = _MatShaperEvaluateRow(p->Mat[2], p->Off[2], r, g, b);
// Now we have to clip to 0..1.0 range
ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1);
gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2);
bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3);
// And across second shaper,
Out[0] = p->Shaper2R[ri];
Out[1] = p->Shaper2G[gi];
Out[2] = p->Shaper2B[bi];
}
// This table converts from 8 bits to 1.14 after applying the curve
static
void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
{
int i;
cmsFloat32Number R, y;
for (i=0; i < 256; i++) {
R = (cmsFloat32Number) (i / 255.0);
y = cmsEvalToneCurveFloat(Curve, R);
if (y < 131072.0)
Table[i] = DOUBLE_TO_1FIXED14(y);
else
Table[i] = 0x7fffffff;
}
}
// This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
static
void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
{
int i;
cmsFloat32Number R, Val;
for (i=0; i < 16385; i++) {
R = (cmsFloat32Number) (i / 16384.0);
Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0
if (Val < 0)
Val = 0;
if (Val > 1.0)
Val = 1.0;
if (Is8BitsOutput) {
// If 8 bits output, we can optimize further by computing the / 257 part.
// first we compute the resulting byte and then we store the byte times
// 257. This quantization allows to round very quick by doing a >> 8, but
// since the low byte is always equal to msb, we can do a & 0xff and this works!
cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
cmsUInt8Number b = FROM_16_TO_8(w);
Table[i] = FROM_8_TO_16(b);
}
else Table[i] = _cmsQuickSaturateWord(Val * 65535.0);
}
}
// Compute the matrix-shaper structure
static
cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
{
MatShaper8Data* p;
int i, j;
cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
// Allocate a big chuck of memory to store precomputed tables
p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
if (p == NULL) return FALSE;
p -> ContextID = Dest -> ContextID;
// Precompute tables
FillFirstShaper(p ->Shaper1R, Curve1[0]);
FillFirstShaper(p ->Shaper1G, Curve1[1]);
FillFirstShaper(p ->Shaper1B, Curve1[2]);
FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
// Convert matrix to nFixed14. Note that those values may take more than 16 bits
for (i=0; i < 3; i++) {
for (j=0; j < 3; j++) {
p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
}
}
for (i=0; i < 3; i++) {
if (Off == NULL) {
p ->Off[i] = 0;
}
else {
p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
}
}
// Mark as optimized for faster formatter
if (Is8Bits)
*OutputFormat |= OPTIMIZED_SH(1);
// Fill function pointers
_cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
return TRUE;
}
// 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
static
cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
{
cmsStage* Curve1, *Curve2;
cmsStage* Matrix1, *Matrix2;
cmsMAT3 res;
cmsBool IdentityMat;
cmsPipeline* Dest, *Src;
cmsFloat64Number* Offset;
// Only works on RGB to RGB
if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
// Only works on 8 bit input
if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
// Seems suitable, proceed
Src = *Lut;
// Check for:
//
// shaper-matrix-matrix-shaper
// shaper-matrix-shaper
//
// Both of those constructs are possible (first because abs. colorimetric).
// additionally, In the first case, the input matrix offset should be zero.
IdentityMat = FALSE;
if (cmsPipelineCheckAndRetreiveStages(Src, 4,
cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
&Curve1, &Matrix1, &Matrix2, &Curve2)) {
// Get both matrices
_cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
_cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
// Input offset should be zero
if (Data1->Offset != NULL) return FALSE;
// Multiply both matrices to get the result
_cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
// Only 2nd matrix has offset, or it is zero
Offset = Data2->Offset;
// Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
// We can get rid of full matrix
IdentityMat = TRUE;
}
}
else {
if (cmsPipelineCheckAndRetreiveStages(Src, 3,
cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
&Curve1, &Matrix1, &Curve2)) {
_cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
// Copy the matrix to our result
memcpy(&res, Data->Double, sizeof(res));
// Preserve the Odffset (may be NULL as a zero offset)
Offset = Data->Offset;
if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
// We can get rid of full matrix
IdentityMat = TRUE;
}
}
else
return FALSE; // Not optimizeable this time
}
// Allocate an empty LUT
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
if (!Dest) return FALSE;
// Assamble the new LUT
if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
goto Error;
if (!IdentityMat) {
if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
goto Error;
}
if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
goto Error;
// If identity on matrix, we can further optimize the curves, so call the join curves routine
if (IdentityMat) {
OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
}
else {
_cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
_cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
// In this particular optimization, cache does not help as it takes more time to deal with
// the cache that with the pixel handling
*dwFlags |= cmsFLAGS_NOCACHE;
// Setup the optimizarion routines
SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
}
cmsPipelineFree(Src);
*Lut = Dest;
return TRUE;
Error:
// Leave Src unchanged
cmsPipelineFree(Dest);
return FALSE;
}
// -------------------------------------------------------------------------------------------------------------------------------------
// Optimization plug-ins
// List of optimizations
typedef struct _cmsOptimizationCollection_st {
_cmsOPToptimizeFn OptimizePtr;
struct _cmsOptimizationCollection_st *Next;
} _cmsOptimizationCollection;
// The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
static _cmsOptimizationCollection DefaultOptimization[] = {
{ OptimizeByJoiningCurves, &DefaultOptimization[1] },
{ OptimizeMatrixShaper, &DefaultOptimization[2] },
{ OptimizeByComputingLinearization, &DefaultOptimization[3] },
{ OptimizeByResampling, NULL }
};
// The linked list head
_cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
// Duplicates the zone of memory used by the plug-in in the new context
static
void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
const struct _cmsContext_struct* src)
{
_cmsOptimizationPluginChunkType newHead = { NULL };
_cmsOptimizationCollection* entry;
_cmsOptimizationCollection* Anterior = NULL;
_cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
_cmsAssert(ctx != NULL);
_cmsAssert(head != NULL);
// Walk the list copying all nodes
for (entry = head->OptimizationCollection;
entry != NULL;
entry = entry ->Next) {
_cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
if (newEntry == NULL)
return;
// We want to keep the linked list order, so this is a little bit tricky
newEntry -> Next = NULL;
if (Anterior)
Anterior -> Next = newEntry;
Anterior = newEntry;
if (newHead.OptimizationCollection == NULL)
newHead.OptimizationCollection = newEntry;
}
ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
}
void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
const struct _cmsContext_struct* src)
{
if (src != NULL) {
// Copy all linked list
DupPluginOptimizationList(ctx, src);
}
else {
static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
}
}
// Register new ways to optimize
cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
{
cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
_cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
_cmsOptimizationCollection* fl;
if (Data == NULL) {
ctx->OptimizationCollection = NULL;
return TRUE;
}
// Optimizer callback is required
if (Plugin ->OptimizePtr == NULL) return FALSE;
fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
if (fl == NULL) return FALSE;
// Copy the parameters
fl ->OptimizePtr = Plugin ->OptimizePtr;
// Keep linked list
fl ->Next = ctx->OptimizationCollection;
// Set the head
ctx ->OptimizationCollection = fl;
// All is ok
return TRUE;
}
// The entry point for LUT optimization
cmsBool CMSEXPORT _cmsOptimizePipeline(cmsContext ContextID,
cmsPipeline** PtrLut,
cmsUInt32Number Intent,
cmsUInt32Number* InputFormat,
cmsUInt32Number* OutputFormat,
cmsUInt32Number* dwFlags)
{
_cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
_cmsOptimizationCollection* Opts;
cmsBool AnySuccess = FALSE;
cmsStage* mpe;
// A CLUT is being asked, so force this specific optimization
if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
PreOptimize(*PtrLut);
return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
}
// Anything to optimize?
if ((*PtrLut) ->Elements == NULL) {
_cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
return TRUE;
}
// Named color pipelines cannot be optimized
for (mpe = cmsPipelineGetPtrToFirstStage(*PtrLut);
mpe != NULL;
mpe = cmsStageNext(mpe)) {
if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
}
// Try to get rid of identities and trivial conversions.
AnySuccess = PreOptimize(*PtrLut);
// After removal do we end with an identity?
if ((*PtrLut) ->Elements == NULL) {
_cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
return TRUE;
}
// Do not optimize, keep all precision
if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
return FALSE;
// Try plug-in optimizations
for (Opts = ctx->OptimizationCollection;
Opts != NULL;
Opts = Opts ->Next) {
// If one schema succeeded, we are done
if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
return TRUE; // Optimized!
}
}
// Try built-in optimizations
for (Opts = DefaultOptimization;
Opts != NULL;
Opts = Opts ->Next) {
if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
return TRUE;
}
}
// Only simple optimizations succeeded
return AnySuccess;
}