| //--------------------------------------------------------------------------------- | 
 | // | 
 | //  Little Color Management System | 
 | //  Copyright (c) 1998-2022 Marti Maria Saguer | 
 | // | 
 | // Permission is hereby granted, free of charge, to any person obtaining | 
 | // a copy of this software and associated documentation files (the "Software"), | 
 | // to deal in the Software without restriction, including without limitation | 
 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
 | // and/or sell copies of the Software, and to permit persons to whom the Software | 
 | // is furnished to do so, subject to the following conditions: | 
 | // | 
 | // The above copyright notice and this permission notice shall be included in | 
 | // all copies or substantial portions of the Software. | 
 | // | 
 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO | 
 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | 
 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | 
 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | 
 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | 
 | // | 
 | //--------------------------------------------------------------------------------- | 
 | // | 
 |  | 
 | #include "lcms2_internal.h" | 
 |  | 
 |  | 
 | #define DSWAP(x, y)     {cmsFloat64Number tmp = (x); (x)=(y); (y)=tmp;} | 
 |  | 
 |  | 
 | // Initiate a vector | 
 | void CMSEXPORT _cmsVEC3init(cmsVEC3* r, cmsFloat64Number x, cmsFloat64Number y, cmsFloat64Number z) | 
 | { | 
 |     r -> n[VX] = x; | 
 |     r -> n[VY] = y; | 
 |     r -> n[VZ] = z; | 
 | } | 
 |  | 
 | // Vector subtraction | 
 | void CMSEXPORT _cmsVEC3minus(cmsVEC3* r, const cmsVEC3* a, const cmsVEC3* b) | 
 | { | 
 |   r -> n[VX] = a -> n[VX] - b -> n[VX]; | 
 |   r -> n[VY] = a -> n[VY] - b -> n[VY]; | 
 |   r -> n[VZ] = a -> n[VZ] - b -> n[VZ]; | 
 | } | 
 |  | 
 | // Vector cross product | 
 | void CMSEXPORT _cmsVEC3cross(cmsVEC3* r, const cmsVEC3* u, const cmsVEC3* v) | 
 | { | 
 |     r ->n[VX] = u->n[VY] * v->n[VZ] - v->n[VY] * u->n[VZ]; | 
 |     r ->n[VY] = u->n[VZ] * v->n[VX] - v->n[VZ] * u->n[VX]; | 
 |     r ->n[VZ] = u->n[VX] * v->n[VY] - v->n[VX] * u->n[VY]; | 
 | } | 
 |  | 
 | // Vector dot product | 
 | cmsFloat64Number CMSEXPORT _cmsVEC3dot(const cmsVEC3* u, const cmsVEC3* v) | 
 | { | 
 |     return u->n[VX] * v->n[VX] + u->n[VY] * v->n[VY] + u->n[VZ] * v->n[VZ]; | 
 | } | 
 |  | 
 | // Euclidean length | 
 | cmsFloat64Number CMSEXPORT _cmsVEC3length(const cmsVEC3* a) | 
 | { | 
 |     return sqrt(a ->n[VX] * a ->n[VX] + | 
 |                 a ->n[VY] * a ->n[VY] + | 
 |                 a ->n[VZ] * a ->n[VZ]); | 
 | } | 
 |  | 
 | // Euclidean distance | 
 | cmsFloat64Number CMSEXPORT _cmsVEC3distance(const cmsVEC3* a, const cmsVEC3* b) | 
 | { | 
 |     cmsFloat64Number d1 = a ->n[VX] - b ->n[VX]; | 
 |     cmsFloat64Number d2 = a ->n[VY] - b ->n[VY]; | 
 |     cmsFloat64Number d3 = a ->n[VZ] - b ->n[VZ]; | 
 |  | 
 |     return sqrt(d1*d1 + d2*d2 + d3*d3); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | // 3x3 Identity | 
 | void CMSEXPORT _cmsMAT3identity(cmsMAT3* a) | 
 | { | 
 |     _cmsVEC3init(&a-> v[0], 1.0, 0.0, 0.0); | 
 |     _cmsVEC3init(&a-> v[1], 0.0, 1.0, 0.0); | 
 |     _cmsVEC3init(&a-> v[2], 0.0, 0.0, 1.0); | 
 | } | 
 |  | 
 | static | 
 | cmsBool CloseEnough(cmsFloat64Number a, cmsFloat64Number b) | 
 | { | 
 |     return fabs(b - a) < (1.0 / 65535.0); | 
 | } | 
 |  | 
 |  | 
 | cmsBool CMSEXPORT _cmsMAT3isIdentity(const cmsMAT3* a) | 
 | { | 
 |     cmsMAT3 Identity; | 
 |     int i, j; | 
 |  | 
 |     _cmsMAT3identity(&Identity); | 
 |  | 
 |     for (i=0; i < 3; i++) | 
 |         for (j=0; j < 3; j++) | 
 |             if (!CloseEnough(a ->v[i].n[j], Identity.v[i].n[j])) return FALSE; | 
 |  | 
 |     return TRUE; | 
 | } | 
 |  | 
 |  | 
 | // Multiply two matrices | 
 | void CMSEXPORT _cmsMAT3per(cmsMAT3* r, const cmsMAT3* a, const cmsMAT3* b) | 
 | { | 
 | #define ROWCOL(i, j) \ | 
 |     a->v[i].n[0]*b->v[0].n[j] + a->v[i].n[1]*b->v[1].n[j] + a->v[i].n[2]*b->v[2].n[j] | 
 |  | 
 |     _cmsVEC3init(&r-> v[0], ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2)); | 
 |     _cmsVEC3init(&r-> v[1], ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2)); | 
 |     _cmsVEC3init(&r-> v[2], ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2)); | 
 |  | 
 | #undef ROWCOL //(i, j) | 
 | } | 
 |  | 
 |  | 
 |  | 
 | // Inverse of a matrix b = a^(-1) | 
 | cmsBool  CMSEXPORT _cmsMAT3inverse(const cmsMAT3* a, cmsMAT3* b) | 
 | { | 
 |    cmsFloat64Number det, c0, c1, c2; | 
 |  | 
 |    c0 =  a -> v[1].n[1]*a -> v[2].n[2] - a -> v[1].n[2]*a -> v[2].n[1]; | 
 |    c1 = -a -> v[1].n[0]*a -> v[2].n[2] + a -> v[1].n[2]*a -> v[2].n[0]; | 
 |    c2 =  a -> v[1].n[0]*a -> v[2].n[1] - a -> v[1].n[1]*a -> v[2].n[0]; | 
 |  | 
 |    det = a -> v[0].n[0]*c0 + a -> v[0].n[1]*c1 + a -> v[0].n[2]*c2; | 
 |  | 
 |    if (fabs(det) < MATRIX_DET_TOLERANCE) return FALSE;  // singular matrix; can't invert | 
 |  | 
 |    b -> v[0].n[0] = c0/det; | 
 |    b -> v[0].n[1] = (a -> v[0].n[2]*a -> v[2].n[1] - a -> v[0].n[1]*a -> v[2].n[2])/det; | 
 |    b -> v[0].n[2] = (a -> v[0].n[1]*a -> v[1].n[2] - a -> v[0].n[2]*a -> v[1].n[1])/det; | 
 |    b -> v[1].n[0] = c1/det; | 
 |    b -> v[1].n[1] = (a -> v[0].n[0]*a -> v[2].n[2] - a -> v[0].n[2]*a -> v[2].n[0])/det; | 
 |    b -> v[1].n[2] = (a -> v[0].n[2]*a -> v[1].n[0] - a -> v[0].n[0]*a -> v[1].n[2])/det; | 
 |    b -> v[2].n[0] = c2/det; | 
 |    b -> v[2].n[1] = (a -> v[0].n[1]*a -> v[2].n[0] - a -> v[0].n[0]*a -> v[2].n[1])/det; | 
 |    b -> v[2].n[2] = (a -> v[0].n[0]*a -> v[1].n[1] - a -> v[0].n[1]*a -> v[1].n[0])/det; | 
 |  | 
 |    return TRUE; | 
 | } | 
 |  | 
 |  | 
 | // Solve a system in the form Ax = b | 
 | cmsBool  CMSEXPORT _cmsMAT3solve(cmsVEC3* x, cmsMAT3* a, cmsVEC3* b) | 
 | { | 
 |     cmsMAT3 m, a_1; | 
 |  | 
 |     memmove(&m, a, sizeof(cmsMAT3)); | 
 |  | 
 |     if (!_cmsMAT3inverse(&m, &a_1)) return FALSE;  // Singular matrix | 
 |  | 
 |     _cmsMAT3eval(x, &a_1, b); | 
 |     return TRUE; | 
 | } | 
 |  | 
 | // Evaluate a vector across a matrix | 
 | void CMSEXPORT _cmsMAT3eval(cmsVEC3* r, const cmsMAT3* a, const cmsVEC3* v) | 
 | { | 
 |     r->n[VX] = a->v[0].n[VX]*v->n[VX] + a->v[0].n[VY]*v->n[VY] + a->v[0].n[VZ]*v->n[VZ]; | 
 |     r->n[VY] = a->v[1].n[VX]*v->n[VX] + a->v[1].n[VY]*v->n[VY] + a->v[1].n[VZ]*v->n[VZ]; | 
 |     r->n[VZ] = a->v[2].n[VX]*v->n[VX] + a->v[2].n[VY]*v->n[VY] + a->v[2].n[VZ]*v->n[VZ]; | 
 | } | 
 |  | 
 |  |