blob: 3b60fab6fab25e28c127e9a911ec7d69644c5690 [file] [log] [blame] [edit]
// Copyright 2016 The PDFium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fpdfdoc/cpdf_nametree.h"
#include <set>
#include <utility>
#include <vector>
#include "core/fpdfapi/parser/cpdf_array.h"
#include "core/fpdfapi/parser/cpdf_dictionary.h"
#include "core/fpdfapi/parser/cpdf_document.h"
#include "core/fpdfapi/parser/cpdf_reference.h"
#include "core/fpdfapi/parser/cpdf_string.h"
#include "core/fpdfapi/parser/fpdf_parser_decode.h"
#include "core/fxcrt/stl_util.h"
#include "third_party/base/check.h"
#include "third_party/base/ptr_util.h"
namespace {
constexpr int kNameTreeMaxRecursion = 32;
std::pair<WideString, WideString> GetNodeLimitsAndSanitize(
CPDF_Array* pLimits) {
DCHECK(pLimits);
WideString csLeft = pLimits->GetUnicodeTextAt(0);
WideString csRight = pLimits->GetUnicodeTextAt(1);
// If the lower limit is greater than the upper limit, swap them.
if (csLeft.Compare(csRight) > 0) {
pLimits->SetNewAt<CPDF_String>(0, csRight.AsStringView());
pLimits->SetNewAt<CPDF_String>(1, csLeft.AsStringView());
csLeft = pLimits->GetUnicodeTextAt(0);
csRight = pLimits->GetUnicodeTextAt(1);
}
while (pLimits->size() > 2)
pLimits->RemoveAt(pLimits->size() - 1);
return {csLeft, csRight};
}
// Get the limit arrays that leaf array |pFind| is under in the tree with root
// |pNode|. |pLimits| will hold all the limit arrays from the leaf up to before
// the root. Return true if successful.
bool GetNodeAncestorsLimitsInternal(const RetainPtr<CPDF_Dictionary>& pNode,
const CPDF_Array* pFind,
int nLevel,
std::vector<CPDF_Array*>* pLimits) {
if (nLevel > kNameTreeMaxRecursion)
return false;
if (pNode->GetArrayFor("Names") == pFind) {
pLimits->push_back(pNode->GetMutableArrayFor("Limits").Get());
return true;
}
RetainPtr<CPDF_Array> pKids = pNode->GetMutableArrayFor("Kids");
if (!pKids)
return false;
for (size_t i = 0; i < pKids->size(); ++i) {
RetainPtr<CPDF_Dictionary> pKid = pKids->GetMutableDictAt(i);
if (!pKid)
continue;
if (GetNodeAncestorsLimitsInternal(pKid, pFind, nLevel + 1, pLimits)) {
pLimits->push_back(pNode->GetMutableArrayFor("Limits").Get());
return true;
}
}
return false;
}
// Wrapper for GetNodeAncestorsLimitsInternal() so callers do not need to know
// about the details.
std::vector<CPDF_Array*> GetNodeAncestorsLimits(
const RetainPtr<CPDF_Dictionary>& pNode,
const CPDF_Array* pFind) {
std::vector<CPDF_Array*> results;
GetNodeAncestorsLimitsInternal(pNode, pFind, 0, &results);
return results;
}
// Upon the deletion of |csName| from leaf array |pFind|, update the ancestors
// of |pFind|. Specifically, the limits of |pFind|'s ancestors will be updated
// if needed, and any ancestors that are now empty will be removed.
bool UpdateNodesAndLimitsUponDeletion(CPDF_Dictionary* pNode,
const CPDF_Array* pFind,
const WideString& csName,
int nLevel) {
if (nLevel > kNameTreeMaxRecursion)
return false;
RetainPtr<CPDF_Array> pLimits = pNode->GetMutableArrayFor("Limits");
WideString csLeft;
WideString csRight;
if (pLimits)
std::tie(csLeft, csRight) = GetNodeLimitsAndSanitize(pLimits.Get());
RetainPtr<const CPDF_Array> pNames = pNode->GetArrayFor("Names");
if (pNames) {
if (pNames != pFind)
return false;
if (pNames->IsEmpty() || !pLimits)
return true;
if (csLeft != csName && csRight != csName)
return true;
// Since |csName| defines |pNode|'s limits, we need to loop through the
// names to find the new lower and upper limits.
WideString csNewLeft = csRight;
WideString csNewRight = csLeft;
for (size_t i = 0; i < pNames->size() / 2; ++i) {
WideString wsName = pNames->GetUnicodeTextAt(i * 2);
if (wsName.Compare(csNewLeft) < 0)
csNewLeft = wsName;
if (wsName.Compare(csNewRight) > 0)
csNewRight = wsName;
}
pLimits->SetNewAt<CPDF_String>(0, csNewLeft.AsStringView());
pLimits->SetNewAt<CPDF_String>(1, csNewRight.AsStringView());
return true;
}
RetainPtr<CPDF_Array> pKids = pNode->GetMutableArrayFor("Kids");
if (!pKids)
return false;
// Loop through the kids to find the leaf array |pFind|.
for (size_t i = 0; i < pKids->size(); ++i) {
RetainPtr<CPDF_Dictionary> pKid = pKids->GetMutableDictAt(i);
if (!pKid)
continue;
if (!UpdateNodesAndLimitsUponDeletion(pKid.Get(), pFind, csName,
nLevel + 1)) {
continue;
}
// Remove this child node if it's empty.
if ((pKid->KeyExist("Names") && pKid->GetArrayFor("Names")->IsEmpty()) ||
(pKid->KeyExist("Kids") && pKid->GetArrayFor("Kids")->IsEmpty())) {
pKids->RemoveAt(i);
}
if (pKids->IsEmpty() || !pLimits)
return true;
if (csLeft != csName && csRight != csName)
return true;
// Since |csName| defines |pNode|'s limits, we need to loop through the
// kids to find the new lower and upper limits.
WideString csNewLeft = csRight;
WideString csNewRight = csLeft;
for (size_t j = 0; j < pKids->size(); ++j) {
RetainPtr<const CPDF_Array> pKidLimits =
pKids->GetDictAt(j)->GetArrayFor("Limits");
DCHECK(pKidLimits);
if (pKidLimits->GetUnicodeTextAt(0).Compare(csNewLeft) < 0)
csNewLeft = pKidLimits->GetUnicodeTextAt(0);
if (pKidLimits->GetUnicodeTextAt(1).Compare(csNewRight) > 0)
csNewRight = pKidLimits->GetUnicodeTextAt(1);
}
pLimits->SetNewAt<CPDF_String>(0, csNewLeft.AsStringView());
pLimits->SetNewAt<CPDF_String>(1, csNewRight.AsStringView());
return true;
}
return false;
}
bool IsTraversedObject(const CPDF_Object* obj,
std::set<uint32_t>* seen_obj_nums) {
uint32_t obj_num = obj->GetObjNum();
if (!obj_num)
return false;
bool inserted = seen_obj_nums->insert(obj_num).second;
return !inserted;
}
bool IsArrayWithTraversedObject(const CPDF_Array* array,
std::set<uint32_t>* seen_obj_nums) {
if (IsTraversedObject(array, seen_obj_nums))
return true;
CPDF_ArrayLocker locker(array);
for (const auto& item : locker) {
if (IsTraversedObject(item.Get(), seen_obj_nums))
return true;
}
return false;
}
// Search for |csName| in the tree with root |pNode|. If successful, return the
// value that |csName| points to; |nIndex| will be the index of |csName|,
// |ppFind| will be the leaf array that |csName| is found in, and |pFindIndex|
// will be the index of |csName| in |ppFind|. If |csName| is not found, |ppFind|
// will be the leaf array that |csName| should be added to, and |pFindIndex|
// will be the index that it should be added at.
RetainPtr<const CPDF_Object> SearchNameNodeByNameInternal(
const RetainPtr<CPDF_Dictionary>& pNode,
const WideString& csName,
int nLevel,
size_t* nIndex,
RetainPtr<CPDF_Array>* ppFind,
int* pFindIndex,
std::set<uint32_t>* seen_obj_nums) {
if (nLevel > kNameTreeMaxRecursion)
return nullptr;
RetainPtr<CPDF_Array> pLimits = pNode->GetMutableArrayFor("Limits");
RetainPtr<CPDF_Array> pNames = pNode->GetMutableArrayFor("Names");
if (pNames && IsArrayWithTraversedObject(pNames.Get(), seen_obj_nums))
pNames.Reset();
if (pLimits && IsArrayWithTraversedObject(pLimits.Get(), seen_obj_nums))
pLimits.Reset();
if (pLimits) {
WideString csLeft;
WideString csRight;
std::tie(csLeft, csRight) = GetNodeLimitsAndSanitize(pLimits.Get());
// Skip this node if the name to look for is smaller than its lower limit.
if (csName.Compare(csLeft) < 0)
return nullptr;
// Skip this node if the name to look for is greater than its higher limit,
// and the node itself is a leaf node.
if (csName.Compare(csRight) > 0 && pNames) {
if (ppFind)
*ppFind = pNames;
if (pFindIndex)
*pFindIndex = fxcrt::CollectionSize<int32_t>(*pNames) / 2 - 1;
return nullptr;
}
}
// If the node is a leaf node, look for the name in its names array.
if (pNames) {
size_t dwCount = pNames->size() / 2;
for (size_t i = 0; i < dwCount; i++) {
WideString csValue = pNames->GetUnicodeTextAt(i * 2);
int32_t iCompare = csValue.Compare(csName);
if (iCompare > 0)
break;
if (ppFind)
*ppFind = pNames;
if (pFindIndex)
*pFindIndex = pdfium::base::checked_cast<int32_t>(i);
if (iCompare < 0)
continue;
*nIndex += i;
return pNames->GetDirectObjectAt(i * 2 + 1);
}
*nIndex += dwCount;
return nullptr;
}
// Search through the node's children.
RetainPtr<CPDF_Array> pKids = pNode->GetMutableArrayFor("Kids");
if (!pKids || IsTraversedObject(pKids.Get(), seen_obj_nums))
return nullptr;
for (size_t i = 0; i < pKids->size(); i++) {
RetainPtr<CPDF_Dictionary> pKid = pKids->GetMutableDictAt(i);
if (!pKid || IsTraversedObject(pKid.Get(), seen_obj_nums))
continue;
RetainPtr<const CPDF_Object> pFound = SearchNameNodeByNameInternal(
pKid, csName, nLevel + 1, nIndex, ppFind, pFindIndex, seen_obj_nums);
if (pFound)
return pFound;
}
return nullptr;
}
// Wrapper for SearchNameNodeByNameInternal() so callers do not need to know
// about the details.
RetainPtr<const CPDF_Object> SearchNameNodeByName(
const RetainPtr<CPDF_Dictionary>& pNode,
const WideString& csName,
RetainPtr<CPDF_Array>* ppFind,
int* pFindIndex) {
size_t nIndex = 0;
std::set<uint32_t> seen_obj_nums;
return SearchNameNodeByNameInternal(pNode, csName, 0, &nIndex, ppFind,
pFindIndex, &seen_obj_nums);
}
struct IndexSearchResult {
// For the n-th object in a tree, the key and value.
WideString key;
RetainPtr<CPDF_Object> value;
// The leaf node that holds `key` and `value`.
RetainPtr<CPDF_Array> container;
// The index for `key` in `container`. Must be even.
size_t index;
};
// Find the `nTargetPairIndex` node in the tree with root `pNode`. `nLevel`
// tracks the recursion level and `nCurPairIndex` tracks the progress towards
// `nTargetPairIndex`.
absl::optional<IndexSearchResult> SearchNameNodeByIndexInternal(
CPDF_Dictionary* pNode,
size_t nTargetPairIndex,
int nLevel,
size_t* nCurPairIndex) {
if (nLevel > kNameTreeMaxRecursion)
return absl::nullopt;
RetainPtr<CPDF_Array> pNames = pNode->GetMutableArrayFor("Names");
if (pNames) {
size_t nCount = pNames->size() / 2;
if (nTargetPairIndex >= *nCurPairIndex + nCount) {
*nCurPairIndex += nCount;
return absl::nullopt;
}
size_t index = 2 * (nTargetPairIndex - *nCurPairIndex);
RetainPtr<CPDF_Object> value = pNames->GetMutableDirectObjectAt(index + 1);
if (!value)
return absl::nullopt;
IndexSearchResult result;
result.key = pNames->GetUnicodeTextAt(index);
result.value = std::move(value);
result.container = std::move(pNames);
result.index = index;
return result;
}
RetainPtr<CPDF_Array> pKids = pNode->GetMutableArrayFor("Kids");
if (!pKids)
return absl::nullopt;
for (size_t i = 0; i < pKids->size(); i++) {
RetainPtr<CPDF_Dictionary> pKid = pKids->GetMutableDictAt(i);
if (!pKid)
continue;
absl::optional<IndexSearchResult> result = SearchNameNodeByIndexInternal(
pKid.Get(), nTargetPairIndex, nLevel + 1, nCurPairIndex);
if (result.has_value())
return result;
}
return absl::nullopt;
}
// Wrapper for SearchNameNodeByIndexInternal() so callers do not need to know
// about the details.
absl::optional<IndexSearchResult> SearchNameNodeByIndex(
CPDF_Dictionary* pNode,
size_t nTargetPairIndex) {
size_t nCurPairIndex = 0;
return SearchNameNodeByIndexInternal(pNode, nTargetPairIndex, 0,
&nCurPairIndex);
}
// Get the total number of key-value pairs in the tree with root |pNode|.
size_t CountNamesInternal(const CPDF_Dictionary* pNode,
int nLevel,
std::set<const CPDF_Dictionary*>& seen) {
if (nLevel > kNameTreeMaxRecursion)
return 0;
const bool inserted = seen.insert(pNode).second;
if (!inserted)
return 0;
RetainPtr<const CPDF_Array> pNames = pNode->GetArrayFor("Names");
if (pNames)
return pNames->size() / 2;
RetainPtr<const CPDF_Array> pKids = pNode->GetArrayFor("Kids");
if (!pKids)
return 0;
size_t nCount = 0;
for (size_t i = 0; i < pKids->size(); i++) {
RetainPtr<const CPDF_Dictionary> pKid = pKids->GetDictAt(i);
if (!pKid)
continue;
nCount += CountNamesInternal(pKid.Get(), nLevel + 1, seen);
}
return nCount;
}
RetainPtr<const CPDF_Array> GetNamedDestFromObject(
RetainPtr<const CPDF_Object> obj) {
RetainPtr<const CPDF_Array> array = ToArray(obj);
if (array)
return array;
RetainPtr<const CPDF_Dictionary> dict = ToDictionary(obj);
if (dict)
return dict->GetArrayFor("D");
return nullptr;
}
RetainPtr<const CPDF_Array> LookupOldStyleNamedDest(CPDF_Document* pDoc,
const ByteString& name) {
RetainPtr<const CPDF_Dictionary> pDests =
pDoc->GetRoot()->GetDictFor("Dests");
if (!pDests)
return nullptr;
return GetNamedDestFromObject(pDests->GetDirectObjectFor(name));
}
} // namespace
CPDF_NameTree::CPDF_NameTree(RetainPtr<CPDF_Dictionary> pRoot)
: m_pRoot(std::move(pRoot)) {
DCHECK(m_pRoot);
}
CPDF_NameTree::~CPDF_NameTree() = default;
// static
std::unique_ptr<CPDF_NameTree> CPDF_NameTree::Create(
CPDF_Document* pDoc,
const ByteString& category) {
RetainPtr<CPDF_Dictionary> pRoot = pDoc->GetMutableRoot();
if (!pRoot)
return nullptr;
RetainPtr<CPDF_Dictionary> pNames = pRoot->GetMutableDictFor("Names");
if (!pNames)
return nullptr;
RetainPtr<CPDF_Dictionary> pCategory = pNames->GetMutableDictFor(category);
if (!pCategory)
return nullptr;
return pdfium::WrapUnique(
new CPDF_NameTree(std::move(pCategory))); // Private ctor.
}
// static
std::unique_ptr<CPDF_NameTree> CPDF_NameTree::CreateWithRootNameArray(
CPDF_Document* pDoc,
const ByteString& category) {
RetainPtr<CPDF_Dictionary> pRoot = pDoc->GetMutableRoot();
if (!pRoot)
return nullptr;
// Retrieve the document's Names dictionary; create it if missing.
RetainPtr<CPDF_Dictionary> pNames = pRoot->GetMutableDictFor("Names");
if (!pNames) {
pNames = pDoc->NewIndirect<CPDF_Dictionary>();
pRoot->SetNewFor<CPDF_Reference>("Names", pDoc, pNames->GetObjNum());
}
// Create the |category| dictionary if missing.
RetainPtr<CPDF_Dictionary> pCategory = pNames->GetMutableDictFor(category);
if (!pCategory) {
pCategory = pDoc->NewIndirect<CPDF_Dictionary>();
pCategory->SetNewFor<CPDF_Array>("Names");
pNames->SetNewFor<CPDF_Reference>(category, pDoc, pCategory->GetObjNum());
}
return pdfium::WrapUnique(new CPDF_NameTree(pCategory)); // Private ctor.
}
// static
std::unique_ptr<CPDF_NameTree> CPDF_NameTree::CreateForTesting(
CPDF_Dictionary* pRoot) {
return pdfium::WrapUnique(
new CPDF_NameTree(pdfium::WrapRetain(pRoot))); // Private ctor.
}
// static
RetainPtr<const CPDF_Array> CPDF_NameTree::LookupNamedDest(
CPDF_Document* pDoc,
const ByteString& name) {
RetainPtr<const CPDF_Array> dest_array;
std::unique_ptr<CPDF_NameTree> name_tree = Create(pDoc, "Dests");
if (name_tree)
dest_array = name_tree->LookupNewStyleNamedDest(name);
if (!dest_array)
dest_array = LookupOldStyleNamedDest(pDoc, name);
return dest_array;
}
size_t CPDF_NameTree::GetCount() const {
std::set<const CPDF_Dictionary*> seen;
return CountNamesInternal(m_pRoot.Get(), 0, seen);
}
bool CPDF_NameTree::AddValueAndName(RetainPtr<CPDF_Object> pObj,
const WideString& name) {
RetainPtr<CPDF_Array> pFind;
int nFindIndex = -1;
// Handle the corner case where the root node is empty. i.e. No kids and no
// names. In which case, just insert into it and skip all the searches.
RetainPtr<CPDF_Array> pNames = m_pRoot->GetMutableArrayFor("Names");
if (pNames && pNames->IsEmpty() && !m_pRoot->GetArrayFor("Kids"))
pFind = pNames;
if (!pFind) {
// Fail if the tree already contains this name or if the tree is too deep.
if (SearchNameNodeByName(m_pRoot, name, &pFind, &nFindIndex))
return false;
}
// If the returned |pFind| is a nullptr, then |name| is smaller than all
// existing entries in the tree, and we did not find a leaf array to place
// |name| into. We instead will find the leftmost leaf array in which to place
// |name| and |pObj|.
if (!pFind) {
absl::optional<IndexSearchResult> result =
SearchNameNodeByIndex(m_pRoot.Get(), 0);
if (!result.has_value()) {
// Give up if that fails too.
return false;
}
pFind = result.value().container;
DCHECK(pFind);
}
// Insert the name and the object into the leaf array found. Note that the
// insertion position is right after the key-value pair returned by |index|.
size_t nNameIndex = (nFindIndex + 1) * 2;
size_t nValueIndex = nNameIndex + 1;
pFind->InsertNewAt<CPDF_String>(nNameIndex, name.AsStringView());
pFind->InsertAt(nValueIndex, std::move(pObj));
// Expand the limits that the newly added name is under, if the name falls
// outside of the limits of its leaf array or any arrays above it.
std::vector<CPDF_Array*> all_limits =
GetNodeAncestorsLimits(m_pRoot, pFind.Get());
for (auto* pLimits : all_limits) {
if (!pLimits)
continue;
if (name.Compare(pLimits->GetUnicodeTextAt(0)) < 0)
pLimits->SetNewAt<CPDF_String>(0, name.AsStringView());
if (name.Compare(pLimits->GetUnicodeTextAt(1)) > 0)
pLimits->SetNewAt<CPDF_String>(1, name.AsStringView());
}
return true;
}
bool CPDF_NameTree::DeleteValueAndName(size_t nIndex) {
absl::optional<IndexSearchResult> result =
SearchNameNodeByIndex(m_pRoot.Get(), nIndex);
if (!result) {
// Fail if the tree does not contain |nIndex|.
return false;
}
// Remove the name and the object from the leaf array |pFind|.
RetainPtr<CPDF_Array> pFind = result.value().container;
pFind->RemoveAt(result.value().index + 1);
pFind->RemoveAt(result.value().index);
// Delete empty nodes and update the limits of |pFind|'s ancestors as needed.
UpdateNodesAndLimitsUponDeletion(m_pRoot.Get(), pFind.Get(),
result.value().key, 0);
return true;
}
RetainPtr<CPDF_Object> CPDF_NameTree::LookupValueAndName(
size_t nIndex,
WideString* csName) const {
absl::optional<IndexSearchResult> result =
SearchNameNodeByIndex(m_pRoot.Get(), nIndex);
if (!result) {
csName->clear();
return nullptr;
}
*csName = std::move(result.value().key);
return result.value().value;
}
RetainPtr<const CPDF_Object> CPDF_NameTree::LookupValue(
const WideString& csName) const {
return SearchNameNodeByName(m_pRoot, csName, nullptr, nullptr);
}
RetainPtr<const CPDF_Array> CPDF_NameTree::LookupNewStyleNamedDest(
const ByteString& sName) {
return GetNamedDestFromObject(LookupValue(PDF_DecodeText(sName.raw_span())));
}