|  | //--------------------------------------------------------------------------------- | 
|  | // | 
|  | //  Little Color Management System | 
|  | //  Copyright (c) 1998-2023 Marti Maria Saguer | 
|  | // | 
|  | // Permission is hereby granted, free of charge, to any person obtaining | 
|  | // a copy of this software and associated documentation files (the "Software"), | 
|  | // to deal in the Software without restriction, including without limitation | 
|  | // the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
|  | // and/or sell copies of the Software, and to permit persons to whom the Software | 
|  | // is furnished to do so, subject to the following conditions: | 
|  | // | 
|  | // The above copyright notice and this permission notice shall be included in | 
|  | // all copies or substantial portions of the Software. | 
|  | // | 
|  | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO | 
|  | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | 
|  | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | 
|  | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | 
|  | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | 
|  | // | 
|  | //--------------------------------------------------------------------------------- | 
|  | // | 
|  | #include "lcms2_internal.h" | 
|  |  | 
|  | // Tone curves are powerful constructs that can contain curves specified in diverse ways. | 
|  | // The curve is stored in segments, where each segment can be sampled or specified by parameters. | 
|  | // a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation, | 
|  | // each segment is evaluated separately. Plug-ins may be used to define new parametric schemes, | 
|  | // each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function, | 
|  | // the plug-in should provide the type id, how many parameters each type has, and a pointer to | 
|  | // a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will | 
|  | // be called with the type id as a negative value, and a sampled version of the reversed curve | 
|  | // will be built. | 
|  |  | 
|  | // ----------------------------------------------------------------- Implementation | 
|  | // Maxim number of nodes | 
|  | #define MAX_NODES_IN_CURVE   4097 | 
|  | #define MINUS_INF            (-1E22F) | 
|  | #define PLUS_INF             (+1E22F) | 
|  |  | 
|  | // The list of supported parametric curves | 
|  | typedef struct _cmsParametricCurvesCollection_st { | 
|  |  | 
|  | cmsUInt32Number nFunctions;                                     // Number of supported functions in this chunk | 
|  | cmsInt32Number  FunctionTypes[MAX_TYPES_IN_LCMS_PLUGIN];        // The identification types | 
|  | cmsUInt32Number ParameterCount[MAX_TYPES_IN_LCMS_PLUGIN];       // Number of parameters for each function | 
|  |  | 
|  | cmsParametricCurveEvaluator Evaluator;                          // The evaluator | 
|  |  | 
|  | struct _cmsParametricCurvesCollection_st* Next; // Next in list | 
|  |  | 
|  | } _cmsParametricCurvesCollection; | 
|  |  | 
|  | // This is the default (built-in) evaluator | 
|  | static cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R); | 
|  |  | 
|  | // The built-in list | 
|  | static const _cmsParametricCurvesCollection DefaultCurves = { | 
|  | 10,                                      // # of curve types | 
|  | { 1, 2, 3, 4, 5, 6, 7, 8, 108, 109 },    // Parametric curve ID | 
|  | { 1, 3, 4, 5, 7, 4, 5, 5,   1,   1 },    // Parameters by type | 
|  | DefaultEvalParametricFn,                 // Evaluator | 
|  | NULL                                     // Next in chain | 
|  | }; | 
|  |  | 
|  | // Duplicates the zone of memory used by the plug-in in the new context | 
|  | static | 
|  | void DupPluginCurvesList(struct _cmsContext_struct* ctx, | 
|  | const struct _cmsContext_struct* src) | 
|  | { | 
|  | _cmsCurvesPluginChunkType newHead = { NULL }; | 
|  | _cmsParametricCurvesCollection*  entry; | 
|  | _cmsParametricCurvesCollection*  Anterior = NULL; | 
|  | _cmsCurvesPluginChunkType* head = (_cmsCurvesPluginChunkType*) src->chunks[CurvesPlugin]; | 
|  |  | 
|  | _cmsAssert(head != NULL); | 
|  |  | 
|  | // Walk the list copying all nodes | 
|  | for (entry = head->ParametricCurves; | 
|  | entry != NULL; | 
|  | entry = entry ->Next) { | 
|  |  | 
|  | _cmsParametricCurvesCollection *newEntry = ( _cmsParametricCurvesCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsParametricCurvesCollection)); | 
|  |  | 
|  | if (newEntry == NULL) | 
|  | return; | 
|  |  | 
|  | // We want to keep the linked list order, so this is a little bit tricky | 
|  | newEntry -> Next = NULL; | 
|  | if (Anterior) | 
|  | Anterior -> Next = newEntry; | 
|  |  | 
|  | Anterior = newEntry; | 
|  |  | 
|  | if (newHead.ParametricCurves == NULL) | 
|  | newHead.ParametricCurves = newEntry; | 
|  | } | 
|  |  | 
|  | ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsCurvesPluginChunkType)); | 
|  | } | 
|  |  | 
|  | // The allocator have to follow the chain | 
|  | void _cmsAllocCurvesPluginChunk(struct _cmsContext_struct* ctx, | 
|  | const struct _cmsContext_struct* src) | 
|  | { | 
|  | _cmsAssert(ctx != NULL); | 
|  |  | 
|  | if (src != NULL) { | 
|  |  | 
|  | // Copy all linked list | 
|  | DupPluginCurvesList(ctx, src); | 
|  | } | 
|  | else { | 
|  | static _cmsCurvesPluginChunkType CurvesPluginChunk = { NULL }; | 
|  | ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx ->MemPool, &CurvesPluginChunk, sizeof(_cmsCurvesPluginChunkType)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // The linked list head | 
|  | _cmsCurvesPluginChunkType _cmsCurvesPluginChunk = { NULL }; | 
|  |  | 
|  | // As a way to install new parametric curves | 
|  | cmsBool _cmsRegisterParametricCurvesPlugin(cmsContext ContextID, cmsPluginBase* Data) | 
|  | { | 
|  | _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin); | 
|  | cmsPluginParametricCurves* Plugin = (cmsPluginParametricCurves*) Data; | 
|  | _cmsParametricCurvesCollection* fl; | 
|  |  | 
|  | if (Data == NULL) { | 
|  |  | 
|  | ctx -> ParametricCurves =  NULL; | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | fl = (_cmsParametricCurvesCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsParametricCurvesCollection)); | 
|  | if (fl == NULL) return FALSE; | 
|  |  | 
|  | // Copy the parameters | 
|  | fl ->Evaluator  = Plugin ->Evaluator; | 
|  | fl ->nFunctions = Plugin ->nFunctions; | 
|  |  | 
|  | // Make sure no mem overwrites | 
|  | if (fl ->nFunctions > MAX_TYPES_IN_LCMS_PLUGIN) | 
|  | fl ->nFunctions = MAX_TYPES_IN_LCMS_PLUGIN; | 
|  |  | 
|  | // Copy the data | 
|  | memmove(fl->FunctionTypes,  Plugin ->FunctionTypes,   fl->nFunctions * sizeof(cmsUInt32Number)); | 
|  | memmove(fl->ParameterCount, Plugin ->ParameterCount,  fl->nFunctions * sizeof(cmsUInt32Number)); | 
|  |  | 
|  | // Keep linked list | 
|  | fl ->Next = ctx->ParametricCurves; | 
|  | ctx->ParametricCurves = fl; | 
|  |  | 
|  | // All is ok | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Search in type list, return position or -1 if not found | 
|  | static | 
|  | int IsInSet(int Type, const _cmsParametricCurvesCollection* c) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i=0; i < (int) c ->nFunctions; i++) | 
|  | if (abs(Type) == c ->FunctionTypes[i]) return i; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Search for the collection which contains a specific type | 
|  | static | 
|  | const _cmsParametricCurvesCollection *GetParametricCurveByType(cmsContext ContextID, int Type, int* index) | 
|  | { | 
|  | const _cmsParametricCurvesCollection* c; | 
|  | int Position; | 
|  | _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin); | 
|  |  | 
|  | for (c = ctx->ParametricCurves; c != NULL; c = c ->Next) { | 
|  |  | 
|  | Position = IsInSet(Type, c); | 
|  |  | 
|  | if (Position != -1) { | 
|  | if (index != NULL) | 
|  | *index = Position; | 
|  | return c; | 
|  | } | 
|  | } | 
|  | // If none found, revert for defaults | 
|  | for (c = &DefaultCurves; c != NULL; c = c ->Next) { | 
|  |  | 
|  | Position = IsInSet(Type, c); | 
|  |  | 
|  | if (Position != -1) { | 
|  | if (index != NULL) | 
|  | *index = Position; | 
|  | return c; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Low level allocate, which takes care of memory details. nEntries may be zero, and in this case | 
|  | // no optimization curve is computed. nSegments may also be zero in the inverse case, where only the | 
|  | // optimization curve is given. Both features simultaneously is an error | 
|  | static | 
|  | cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsUInt32Number nEntries, | 
|  | cmsUInt32Number nSegments, const cmsCurveSegment* Segments, | 
|  | const cmsUInt16Number* Values) | 
|  | { | 
|  | cmsToneCurve* p; | 
|  | cmsUInt32Number i; | 
|  |  | 
|  | // We allow huge tables, which are then restricted for smoothing operations | 
|  | if (nEntries > 65530) { | 
|  | cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve of more than 65530 entries"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (nEntries == 0 && nSegments == 0) { | 
|  | cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve with zero segments and no table"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Allocate all required pointers, etc. | 
|  | p = (cmsToneCurve*) _cmsMallocZero(ContextID, sizeof(cmsToneCurve)); | 
|  | if (!p) return NULL; | 
|  |  | 
|  | // In this case, there are no segments | 
|  | if (nSegments == 0) { | 
|  | p ->Segments = NULL; | 
|  | p ->Evals = NULL; | 
|  | } | 
|  | else { | 
|  | p ->Segments = (cmsCurveSegment*) _cmsCalloc(ContextID, nSegments, sizeof(cmsCurveSegment)); | 
|  | if (p ->Segments == NULL) goto Error; | 
|  |  | 
|  | p ->Evals    = (cmsParametricCurveEvaluator*) _cmsCalloc(ContextID, nSegments, sizeof(cmsParametricCurveEvaluator)); | 
|  | if (p ->Evals == NULL) goto Error; | 
|  | } | 
|  |  | 
|  | p -> nSegments = nSegments; | 
|  |  | 
|  | // This 16-bit table contains a limited precision representation of the whole curve and is kept for | 
|  | // increasing xput on certain operations. | 
|  | if (nEntries == 0) { | 
|  | p ->Table16 = NULL; | 
|  | } | 
|  | else { | 
|  | p ->Table16 = (cmsUInt16Number*)  _cmsCalloc(ContextID, nEntries, sizeof(cmsUInt16Number)); | 
|  | if (p ->Table16 == NULL) goto Error; | 
|  | } | 
|  |  | 
|  | p -> nEntries  = nEntries; | 
|  |  | 
|  | // Initialize members if requested | 
|  | if (Values != NULL && (nEntries > 0)) { | 
|  |  | 
|  | for (i=0; i < nEntries; i++) | 
|  | p ->Table16[i] = Values[i]; | 
|  | } | 
|  |  | 
|  | // Initialize the segments stuff. The evaluator for each segment is located and a pointer to it | 
|  | // is placed in advance to maximize performance. | 
|  | if (Segments != NULL && (nSegments > 0)) { | 
|  |  | 
|  | const _cmsParametricCurvesCollection *c; | 
|  |  | 
|  | p ->SegInterp = (cmsInterpParams**) _cmsCalloc(ContextID, nSegments, sizeof(cmsInterpParams*)); | 
|  | if (p ->SegInterp == NULL) goto Error; | 
|  |  | 
|  | for (i=0; i < nSegments; i++) { | 
|  |  | 
|  | // Type 0 is a special marker for table-based curves | 
|  | if (Segments[i].Type == 0) | 
|  | p ->SegInterp[i] = _cmsComputeInterpParams(ContextID, Segments[i].nGridPoints, 1, 1, NULL, CMS_LERP_FLAGS_FLOAT); | 
|  |  | 
|  | memmove(&p ->Segments[i], &Segments[i], sizeof(cmsCurveSegment)); | 
|  |  | 
|  | if (Segments[i].Type == 0 && Segments[i].SampledPoints != NULL) | 
|  | p ->Segments[i].SampledPoints = (cmsFloat32Number*) _cmsDupMem(ContextID, Segments[i].SampledPoints, sizeof(cmsFloat32Number) * Segments[i].nGridPoints); | 
|  | else | 
|  | p ->Segments[i].SampledPoints = NULL; | 
|  |  | 
|  |  | 
|  | c = GetParametricCurveByType(ContextID, Segments[i].Type, NULL); | 
|  | if (c != NULL) | 
|  | p ->Evals[i] = c ->Evaluator; | 
|  | } | 
|  | } | 
|  |  | 
|  | p ->InterpParams = _cmsComputeInterpParams(ContextID, p ->nEntries, 1, 1, p->Table16, CMS_LERP_FLAGS_16BITS); | 
|  | if (p->InterpParams != NULL) | 
|  | return p; | 
|  |  | 
|  | Error: | 
|  | if (p -> SegInterp) _cmsFree(ContextID, p -> SegInterp); | 
|  | if (p -> Segments) _cmsFree(ContextID, p -> Segments); | 
|  | if (p -> Evals) _cmsFree(ContextID, p -> Evals); | 
|  | if (p ->Table16) _cmsFree(ContextID, p ->Table16); | 
|  | _cmsFree(ContextID, p); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Generates a sigmoidal function with desired steepness. | 
|  | cmsINLINE double sigmoid_base(double k, double t) | 
|  | { | 
|  | return (1.0 / (1.0 + exp(-k * t))) - 0.5; | 
|  | } | 
|  |  | 
|  | cmsINLINE double inverted_sigmoid_base(double k, double t) | 
|  | { | 
|  | return -log((1.0 / (t + 0.5)) - 1.0) / k; | 
|  | } | 
|  |  | 
|  | cmsINLINE double sigmoid_factory(double k, double t) | 
|  | { | 
|  | double correction = 0.5 / sigmoid_base(k, 1); | 
|  |  | 
|  | return correction * sigmoid_base(k, 2.0 * t - 1.0) + 0.5; | 
|  | } | 
|  |  | 
|  | cmsINLINE double inverse_sigmoid_factory(double k, double t) | 
|  | { | 
|  | double correction = 0.5 / sigmoid_base(k, 1); | 
|  |  | 
|  | return (inverted_sigmoid_base(k, (t - 0.5) / correction) + 1.0) / 2.0; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Parametric Fn using floating point | 
|  | static | 
|  | cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R) | 
|  | { | 
|  | cmsFloat64Number e, Val, disc; | 
|  |  | 
|  | switch (Type) { | 
|  |  | 
|  | // X = Y ^ Gamma | 
|  | case 1: | 
|  | if (R < 0) { | 
|  |  | 
|  | if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE) | 
|  | Val = R; | 
|  | else | 
|  | Val = 0; | 
|  | } | 
|  | else | 
|  | Val = pow(R, Params[0]); | 
|  | break; | 
|  |  | 
|  | // Type 1 Reversed: X = Y ^1/gamma | 
|  | case -1: | 
|  | if (R < 0) { | 
|  |  | 
|  | if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE) | 
|  | Val = R; | 
|  | else | 
|  | Val = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE) | 
|  | Val = PLUS_INF; | 
|  | else | 
|  | Val = pow(R, 1 / Params[0]); | 
|  | } | 
|  | break; | 
|  |  | 
|  | // CIE 122-1966 | 
|  | // Y = (aX + b)^Gamma  | X >= -b/a | 
|  | // Y = 0               | else | 
|  | case 2: | 
|  | { | 
|  |  | 
|  | if (fabs(Params[1]) < MATRIX_DET_TOLERANCE) | 
|  | { | 
|  | Val = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | disc = -Params[2] / Params[1]; | 
|  |  | 
|  | if (R >= disc) { | 
|  |  | 
|  | e = Params[1] * R + Params[2]; | 
|  |  | 
|  | if (e > 0) | 
|  | Val = pow(e, Params[0]); | 
|  | else | 
|  | Val = 0; | 
|  | } | 
|  | else | 
|  | Val = 0; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | // Type 2 Reversed | 
|  | // X = (Y ^1/g  - b) / a | 
|  | case -2: | 
|  | { | 
|  | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || | 
|  | fabs(Params[1]) < MATRIX_DET_TOLERANCE) | 
|  | { | 
|  | Val = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (R < 0) | 
|  | Val = 0; | 
|  | else | 
|  | Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1]; | 
|  |  | 
|  | if (Val < 0) | 
|  | Val = 0; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | // IEC 61966-3 | 
|  | // Y = (aX + b)^Gamma + c | X <= -b/a | 
|  | // Y = c                  | else | 
|  | case 3: | 
|  | { | 
|  | if (fabs(Params[1]) < MATRIX_DET_TOLERANCE) | 
|  | { | 
|  | Val = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | disc = -Params[2] / Params[1]; | 
|  | if (disc < 0) | 
|  | disc = 0; | 
|  |  | 
|  | if (R >= disc) { | 
|  |  | 
|  | e = Params[1] * R + Params[2]; | 
|  |  | 
|  | if (e > 0) | 
|  | Val = pow(e, Params[0]) + Params[3]; | 
|  | else | 
|  | Val = 0; | 
|  | } | 
|  | else | 
|  | Val = Params[3]; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | // Type 3 reversed | 
|  | // X=((Y-c)^1/g - b)/a      | (Y>=c) | 
|  | // X=-b/a                   | (Y<c) | 
|  | case -3: | 
|  | { | 
|  | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || | 
|  | fabs(Params[1]) < MATRIX_DET_TOLERANCE) | 
|  | { | 
|  | Val = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (R >= Params[3]) { | 
|  |  | 
|  | e = R - Params[3]; | 
|  |  | 
|  | if (e > 0) | 
|  | Val = (pow(e, 1 / Params[0]) - Params[2]) / Params[1]; | 
|  | else | 
|  | Val = 0; | 
|  | } | 
|  | else { | 
|  | Val = -Params[2] / Params[1]; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | // IEC 61966-2.1 (sRGB) | 
|  | // Y = (aX + b)^Gamma | X >= d | 
|  | // Y = cX             | X < d | 
|  | case 4: | 
|  | if (R >= Params[4]) { | 
|  |  | 
|  | e = Params[1]*R + Params[2]; | 
|  |  | 
|  | if (e > 0) | 
|  | Val = pow(e, Params[0]); | 
|  | else | 
|  | Val = 0; | 
|  | } | 
|  | else | 
|  | Val = R * Params[3]; | 
|  | break; | 
|  |  | 
|  | // Type 4 reversed | 
|  | // X=((Y^1/g-b)/a)    | Y >= (ad+b)^g | 
|  | // X=Y/c              | Y< (ad+b)^g | 
|  | case -4: | 
|  | { | 
|  |  | 
|  | e = Params[1] * Params[4] + Params[2]; | 
|  | if (e < 0) | 
|  | disc = 0; | 
|  | else | 
|  | disc = pow(e, Params[0]); | 
|  |  | 
|  | if (R >= disc) { | 
|  |  | 
|  | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || | 
|  | fabs(Params[1]) < MATRIX_DET_TOLERANCE) | 
|  |  | 
|  | Val = 0; | 
|  |  | 
|  | else | 
|  | Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1]; | 
|  | } | 
|  | else { | 
|  |  | 
|  | if (fabs(Params[3]) < MATRIX_DET_TOLERANCE) | 
|  | Val = 0; | 
|  | else | 
|  | Val = R / Params[3]; | 
|  | } | 
|  |  | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | // Y = (aX + b)^Gamma + e | X >= d | 
|  | // Y = cX + f             | X < d | 
|  | case 5: | 
|  | if (R >= Params[4]) { | 
|  |  | 
|  | e = Params[1]*R + Params[2]; | 
|  |  | 
|  | if (e > 0) | 
|  | Val = pow(e, Params[0]) + Params[5]; | 
|  | else | 
|  | Val = Params[5]; | 
|  | } | 
|  | else | 
|  | Val = R*Params[3] + Params[6]; | 
|  | break; | 
|  |  | 
|  |  | 
|  | // Reversed type 5 | 
|  | // X=((Y-e)1/g-b)/a   | Y >=(ad+b)^g+e), cd+f | 
|  | // X=(Y-f)/c          | else | 
|  | case -5: | 
|  | { | 
|  | disc = Params[3] * Params[4] + Params[6]; | 
|  | if (R >= disc) { | 
|  |  | 
|  | e = R - Params[5]; | 
|  | if (e < 0) | 
|  | Val = 0; | 
|  | else | 
|  | { | 
|  | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || | 
|  | fabs(Params[1]) < MATRIX_DET_TOLERANCE) | 
|  |  | 
|  | Val = 0; | 
|  | else | 
|  | Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1]; | 
|  | } | 
|  | } | 
|  | else { | 
|  | if (fabs(Params[3]) < MATRIX_DET_TOLERANCE) | 
|  | Val = 0; | 
|  | else | 
|  | Val = (R - Params[6]) / Params[3]; | 
|  | } | 
|  |  | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | // Types 6,7,8 comes from segmented curves as described in ICCSpecRevision_02_11_06_Float.pdf | 
|  | // Type 6 is basically identical to type 5 without d | 
|  |  | 
|  | // Y = (a * X + b) ^ Gamma + c | 
|  | case 6: | 
|  | e = Params[1]*R + Params[2]; | 
|  |  | 
|  | if (e < 0) | 
|  | Val = Params[3]; | 
|  | else | 
|  | Val = pow(e, Params[0]) + Params[3]; | 
|  | break; | 
|  |  | 
|  | // ((Y - c) ^1/Gamma - b) / a | 
|  | case -6: | 
|  | { | 
|  | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || | 
|  | fabs(Params[1]) < MATRIX_DET_TOLERANCE) | 
|  | { | 
|  | Val = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | e = R - Params[3]; | 
|  | if (e < 0) | 
|  | Val = 0; | 
|  | else | 
|  | Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1]; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | // Y = a * log (b * X^Gamma + c) + d | 
|  | case 7: | 
|  |  | 
|  | e = Params[2] * pow(R, Params[0]) + Params[3]; | 
|  | if (e <= 0) | 
|  | Val = Params[4]; | 
|  | else | 
|  | Val = Params[1]*log10(e) + Params[4]; | 
|  | break; | 
|  |  | 
|  | // (Y - d) / a = log(b * X ^Gamma + c) | 
|  | // pow(10, (Y-d) / a) = b * X ^Gamma + c | 
|  | // pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X | 
|  | case -7: | 
|  | { | 
|  | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || | 
|  | fabs(Params[1]) < MATRIX_DET_TOLERANCE || | 
|  | fabs(Params[2]) < MATRIX_DET_TOLERANCE) | 
|  | { | 
|  | Val = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | Val = pow((pow(10.0, (R - Params[4]) / Params[1]) - Params[3]) / Params[2], 1.0 / Params[0]); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | //Y = a * b^(c*X+d) + e | 
|  | case 8: | 
|  | Val = (Params[0] * pow(Params[1], Params[2] * R + Params[3]) + Params[4]); | 
|  | break; | 
|  |  | 
|  |  | 
|  | // Y = (log((y-e) / a) / log(b) - d ) / c | 
|  | // a=0, b=1, c=2, d=3, e=4, | 
|  | case -8: | 
|  |  | 
|  | disc = R - Params[4]; | 
|  | if (disc < 0) Val = 0; | 
|  | else | 
|  | { | 
|  | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || | 
|  | fabs(Params[2]) < MATRIX_DET_TOLERANCE) | 
|  | { | 
|  | Val = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | Val = (log(disc / Params[0]) / log(Params[1]) - Params[3]) / Params[2]; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | // S-Shaped: (1 - (1-x)^1/g)^1/g | 
|  | case 108: | 
|  | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE) | 
|  | Val = 0; | 
|  | else | 
|  | Val = pow(1.0 - pow(1 - R, 1/Params[0]), 1/Params[0]); | 
|  | break; | 
|  |  | 
|  | // y = (1 - (1-x)^1/g)^1/g | 
|  | // y^g = (1 - (1-x)^1/g) | 
|  | // 1 - y^g = (1-x)^1/g | 
|  | // (1 - y^g)^g = 1 - x | 
|  | // 1 - (1 - y^g)^g | 
|  | case -108: | 
|  | Val = 1 - pow(1 - pow(R, Params[0]), Params[0]); | 
|  | break; | 
|  |  | 
|  | // Sigmoidals | 
|  | case 109: | 
|  | Val = sigmoid_factory(Params[0], R); | 
|  | break; | 
|  |  | 
|  | case -109: | 
|  | Val = inverse_sigmoid_factory(Params[0], R); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | // Unsupported parametric curve. Should never reach here | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | // Evaluate a segmented function for a single value. Return -Inf if no valid segment found . | 
|  | // If fn type is 0, perform an interpolation on the table | 
|  | static | 
|  | cmsFloat64Number EvalSegmentedFn(const cmsToneCurve *g, cmsFloat64Number R) | 
|  | { | 
|  | int i; | 
|  | cmsFloat32Number Out32; | 
|  | cmsFloat64Number Out; | 
|  |  | 
|  | for (i = (int) g->nSegments - 1; i >= 0; --i) { | 
|  |  | 
|  | // Check for domain | 
|  | if ((R > g->Segments[i].x0) && (R <= g->Segments[i].x1)) { | 
|  |  | 
|  | // Type == 0 means segment is sampled | 
|  | if (g->Segments[i].Type == 0) { | 
|  |  | 
|  | cmsFloat32Number R1 = (cmsFloat32Number)(R - g->Segments[i].x0) / (g->Segments[i].x1 - g->Segments[i].x0); | 
|  |  | 
|  | // Setup the table (TODO: clean that) | 
|  | g->SegInterp[i]->Table = g->Segments[i].SampledPoints; | 
|  |  | 
|  | g->SegInterp[i]->Interpolation.LerpFloat(&R1, &Out32, g->SegInterp[i]); | 
|  | Out = (cmsFloat64Number) Out32; | 
|  |  | 
|  | } | 
|  | else { | 
|  | Out = g->Evals[i](g->Segments[i].Type, g->Segments[i].Params, R); | 
|  | } | 
|  |  | 
|  | if (isinf(Out)) | 
|  | return PLUS_INF; | 
|  | else | 
|  | { | 
|  | if (isinf(-Out)) | 
|  | return MINUS_INF; | 
|  | } | 
|  |  | 
|  | return Out; | 
|  | } | 
|  | } | 
|  |  | 
|  | return MINUS_INF; | 
|  | } | 
|  |  | 
|  | // Access to estimated low-res table | 
|  | cmsUInt32Number CMSEXPORT cmsGetToneCurveEstimatedTableEntries(const cmsToneCurve* t) | 
|  | { | 
|  | _cmsAssert(t != NULL); | 
|  | return t ->nEntries; | 
|  | } | 
|  |  | 
|  | const cmsUInt16Number* CMSEXPORT cmsGetToneCurveEstimatedTable(const cmsToneCurve* t) | 
|  | { | 
|  | _cmsAssert(t != NULL); | 
|  | return t ->Table16; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Create an empty gamma curve, by using tables. This specifies only the limited-precision part, and leaves the | 
|  | // floating point description empty. | 
|  | cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurve16(cmsContext ContextID, cmsUInt32Number nEntries, const cmsUInt16Number Values[]) | 
|  | { | 
|  | return AllocateToneCurveStruct(ContextID, nEntries, 0, NULL, Values); | 
|  | } | 
|  |  | 
|  | static | 
|  | cmsUInt32Number EntriesByGamma(cmsFloat64Number Gamma) | 
|  | { | 
|  | if (fabs(Gamma - 1.0) < 0.001) return 2; | 
|  | return 4096; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Create a segmented gamma, fill the table | 
|  | cmsToneCurve* CMSEXPORT cmsBuildSegmentedToneCurve(cmsContext ContextID, | 
|  | cmsUInt32Number nSegments, const cmsCurveSegment Segments[]) | 
|  | { | 
|  | cmsUInt32Number i; | 
|  | cmsFloat64Number R, Val; | 
|  | cmsToneCurve* g; | 
|  | cmsUInt32Number nGridPoints = 4096; | 
|  |  | 
|  | _cmsAssert(Segments != NULL); | 
|  |  | 
|  | // Optimizatin for identity curves. | 
|  | if (nSegments == 1 && Segments[0].Type == 1) { | 
|  |  | 
|  | nGridPoints = EntriesByGamma(Segments[0].Params[0]); | 
|  | } | 
|  |  | 
|  | g = AllocateToneCurveStruct(ContextID, nGridPoints, nSegments, Segments, NULL); | 
|  | if (g == NULL) return NULL; | 
|  |  | 
|  | // Once we have the floating point version, we can approximate a 16 bit table of 4096 entries | 
|  | // for performance reasons. This table would normally not be used except on 8/16 bits transforms. | 
|  | for (i = 0; i < nGridPoints; i++) { | 
|  |  | 
|  | R   = (cmsFloat64Number) i / (nGridPoints-1); | 
|  |  | 
|  | Val = EvalSegmentedFn(g, R); | 
|  |  | 
|  | // Round and saturate | 
|  | g ->Table16[i] = _cmsQuickSaturateWord(Val * 65535.0); | 
|  | } | 
|  |  | 
|  | return g; | 
|  | } | 
|  |  | 
|  | // Use a segmented curve to store the floating point table | 
|  | cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurveFloat(cmsContext ContextID, cmsUInt32Number nEntries, const cmsFloat32Number values[]) | 
|  | { | 
|  | cmsCurveSegment Seg[3]; | 
|  |  | 
|  | // Do some housekeeping | 
|  | if (nEntries == 0 || values == NULL) | 
|  | return NULL; | 
|  |  | 
|  | // A segmented tone curve should have function segments in the first and last positions | 
|  | // Initialize segmented curve part up to 0 to constant value = samples[0] | 
|  | Seg[0].x0 = MINUS_INF; | 
|  | Seg[0].x1 = 0; | 
|  | Seg[0].Type = 6; | 
|  |  | 
|  | Seg[0].Params[0] = 1; | 
|  | Seg[0].Params[1] = 0; | 
|  | Seg[0].Params[2] = 0; | 
|  | Seg[0].Params[3] = values[0]; | 
|  | Seg[0].Params[4] = 0; | 
|  |  | 
|  | // From zero to 1 | 
|  | Seg[1].x0 = 0; | 
|  | Seg[1].x1 = 1.0; | 
|  | Seg[1].Type = 0; | 
|  |  | 
|  | Seg[1].nGridPoints = nEntries; | 
|  | Seg[1].SampledPoints = (cmsFloat32Number*) values; | 
|  |  | 
|  | // Final segment is constant = lastsample | 
|  | Seg[2].x0 = 1.0; | 
|  | Seg[2].x1 = PLUS_INF; | 
|  | Seg[2].Type = 6; | 
|  |  | 
|  | Seg[2].Params[0] = 1; | 
|  | Seg[2].Params[1] = 0; | 
|  | Seg[2].Params[2] = 0; | 
|  | Seg[2].Params[3] = values[nEntries-1]; | 
|  | Seg[2].Params[4] = 0; | 
|  |  | 
|  |  | 
|  | return cmsBuildSegmentedToneCurve(ContextID, 3, Seg); | 
|  | } | 
|  |  | 
|  | // Parametric curves | 
|  | // | 
|  | // Parameters goes as: Curve, a, b, c, d, e, f | 
|  | // Type is the ICC type +1 | 
|  | // if type is negative, then the curve is analytically inverted | 
|  | cmsToneCurve* CMSEXPORT cmsBuildParametricToneCurve(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[]) | 
|  | { | 
|  | cmsCurveSegment Seg0; | 
|  | int Pos = 0; | 
|  | cmsUInt32Number size; | 
|  | const _cmsParametricCurvesCollection* c = GetParametricCurveByType(ContextID, Type, &Pos); | 
|  |  | 
|  | _cmsAssert(Params != NULL); | 
|  |  | 
|  | if (c == NULL) { | 
|  | cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Invalid parametric curve type %d", Type); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | memset(&Seg0, 0, sizeof(Seg0)); | 
|  |  | 
|  | Seg0.x0   = MINUS_INF; | 
|  | Seg0.x1   = PLUS_INF; | 
|  | Seg0.Type = Type; | 
|  |  | 
|  | size = c->ParameterCount[Pos] * sizeof(cmsFloat64Number); | 
|  | memmove(Seg0.Params, Params, size); | 
|  |  | 
|  | return cmsBuildSegmentedToneCurve(ContextID, 1, &Seg0); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // Build a gamma table based on gamma constant | 
|  | cmsToneCurve* CMSEXPORT cmsBuildGamma(cmsContext ContextID, cmsFloat64Number Gamma) | 
|  | { | 
|  | return cmsBuildParametricToneCurve(ContextID, 1, &Gamma); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Free all memory taken by the gamma curve | 
|  | void CMSEXPORT cmsFreeToneCurve(cmsToneCurve* Curve) | 
|  | { | 
|  | cmsContext ContextID; | 
|  |  | 
|  | // added by Xiaochuan Liu | 
|  | // Curve->InterpParams may be null | 
|  | if (Curve == NULL || Curve->InterpParams == NULL) return; | 
|  |  | 
|  | ContextID = Curve ->InterpParams->ContextID; | 
|  |  | 
|  | _cmsFreeInterpParams(Curve ->InterpParams); | 
|  | Curve ->InterpParams = NULL; | 
|  |  | 
|  | if (Curve -> Table16) { | 
|  | _cmsFree(ContextID, Curve ->Table16); | 
|  | Curve ->Table16 = NULL; | 
|  | } | 
|  |  | 
|  | if (Curve ->Segments) { | 
|  |  | 
|  | cmsUInt32Number i; | 
|  |  | 
|  | for (i=0; i < Curve ->nSegments; i++) { | 
|  |  | 
|  | if (Curve ->Segments[i].SampledPoints) { | 
|  | _cmsFree(ContextID, Curve ->Segments[i].SampledPoints); | 
|  | Curve ->Segments[i].SampledPoints = NULL; | 
|  | } | 
|  |  | 
|  | if (Curve ->SegInterp[i] != 0) { | 
|  | _cmsFreeInterpParams(Curve->SegInterp[i]); | 
|  | Curve->SegInterp[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | _cmsFree(ContextID, Curve ->Segments); | 
|  | Curve ->Segments = NULL; | 
|  | _cmsFree(ContextID, Curve ->SegInterp); | 
|  | Curve ->SegInterp = NULL; | 
|  | } | 
|  |  | 
|  | if (Curve -> Evals) { | 
|  | _cmsFree(ContextID, Curve -> Evals); | 
|  | Curve -> Evals = NULL; | 
|  | } | 
|  |  | 
|  | _cmsFree(ContextID, Curve); | 
|  | } | 
|  |  | 
|  | // Utility function, free 3 gamma tables | 
|  | void CMSEXPORT cmsFreeToneCurveTriple(cmsToneCurve* Curve[3]) | 
|  | { | 
|  |  | 
|  | _cmsAssert(Curve != NULL); | 
|  |  | 
|  | if (Curve[0] != NULL) cmsFreeToneCurve(Curve[0]); | 
|  | if (Curve[1] != NULL) cmsFreeToneCurve(Curve[1]); | 
|  | if (Curve[2] != NULL) cmsFreeToneCurve(Curve[2]); | 
|  |  | 
|  | Curve[0] = Curve[1] = Curve[2] = NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Duplicate a gamma table | 
|  | cmsToneCurve* CMSEXPORT cmsDupToneCurve(const cmsToneCurve* In) | 
|  | { | 
|  | if (In == NULL) return NULL; | 
|  |  | 
|  | return  AllocateToneCurveStruct(In ->InterpParams ->ContextID, In ->nEntries, In ->nSegments, In ->Segments, In ->Table16); | 
|  | } | 
|  |  | 
|  | // Joins two curves for X and Y. Curves should be monotonic. | 
|  | // We want to get | 
|  | // | 
|  | //      y = Y^-1(X(t)) | 
|  | // | 
|  | cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID, | 
|  | const cmsToneCurve* X, | 
|  | const cmsToneCurve* Y, cmsUInt32Number nResultingPoints) | 
|  | { | 
|  | cmsToneCurve* out = NULL; | 
|  | cmsToneCurve* Yreversed = NULL; | 
|  | cmsFloat32Number t, x; | 
|  | cmsFloat32Number* Res = NULL; | 
|  | cmsUInt32Number i; | 
|  |  | 
|  |  | 
|  | _cmsAssert(X != NULL); | 
|  | _cmsAssert(Y != NULL); | 
|  |  | 
|  | Yreversed = cmsReverseToneCurveEx(nResultingPoints, Y); | 
|  | if (Yreversed == NULL) goto Error; | 
|  |  | 
|  | Res = (cmsFloat32Number*) _cmsCalloc(ContextID, nResultingPoints, sizeof(cmsFloat32Number)); | 
|  | if (Res == NULL) goto Error; | 
|  |  | 
|  | //Iterate | 
|  | for (i=0; i <  nResultingPoints; i++) { | 
|  |  | 
|  | t = (cmsFloat32Number) i / (cmsFloat32Number)(nResultingPoints-1); | 
|  | x = cmsEvalToneCurveFloat(X,  t); | 
|  | Res[i] = cmsEvalToneCurveFloat(Yreversed, x); | 
|  | } | 
|  |  | 
|  | // Allocate space for output | 
|  | out = cmsBuildTabulatedToneCurveFloat(ContextID, nResultingPoints, Res); | 
|  |  | 
|  | Error: | 
|  |  | 
|  | if (Res != NULL) _cmsFree(ContextID, Res); | 
|  | if (Yreversed != NULL) cmsFreeToneCurve(Yreversed); | 
|  |  | 
|  | return out; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // Get the surrounding nodes. This is tricky on non-monotonic tables | 
|  | static | 
|  | int GetInterval(cmsFloat64Number In, const cmsUInt16Number LutTable[], const struct _cms_interp_struc* p) | 
|  | { | 
|  | int i; | 
|  | int y0, y1; | 
|  |  | 
|  | // A 1 point table is not allowed | 
|  | if (p -> Domain[0] < 1) return -1; | 
|  |  | 
|  | // Let's see if ascending or descending. | 
|  | if (LutTable[0] < LutTable[p ->Domain[0]]) { | 
|  |  | 
|  | // Table is overall ascending | 
|  | for (i = (int) p->Domain[0] - 1; i >= 0; --i) { | 
|  |  | 
|  | y0 = LutTable[i]; | 
|  | y1 = LutTable[i+1]; | 
|  |  | 
|  | if (y0 <= y1) { // Increasing | 
|  | if (In >= y0 && In <= y1) return i; | 
|  | } | 
|  | else | 
|  | if (y1 < y0) { // Decreasing | 
|  | if (In >= y1 && In <= y0) return i; | 
|  | } | 
|  | } | 
|  | } | 
|  | else { | 
|  | // Table is overall descending | 
|  | for (i=0; i < (int) p -> Domain[0]; i++) { | 
|  |  | 
|  | y0 = LutTable[i]; | 
|  | y1 = LutTable[i+1]; | 
|  |  | 
|  | if (y0 <= y1) { // Increasing | 
|  | if (In >= y0 && In <= y1) return i; | 
|  | } | 
|  | else | 
|  | if (y1 < y0) { // Decreasing | 
|  | if (In >= y1 && In <= y0) return i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Reverse a gamma table | 
|  | cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsUInt32Number nResultSamples, const cmsToneCurve* InCurve) | 
|  | { | 
|  | cmsToneCurve *out; | 
|  | cmsFloat64Number a = 0, b = 0, y, x1, y1, x2, y2; | 
|  | int i, j; | 
|  | int Ascending; | 
|  |  | 
|  | _cmsAssert(InCurve != NULL); | 
|  |  | 
|  | // Try to reverse it analytically whatever possible | 
|  |  | 
|  | if (InCurve ->nSegments == 1 && InCurve ->Segments[0].Type > 0 && | 
|  | /* InCurve -> Segments[0].Type <= 5 */ | 
|  | GetParametricCurveByType(InCurve ->InterpParams->ContextID, InCurve ->Segments[0].Type, NULL) != NULL) { | 
|  |  | 
|  | return cmsBuildParametricToneCurve(InCurve ->InterpParams->ContextID, | 
|  | -(InCurve -> Segments[0].Type), | 
|  | InCurve -> Segments[0].Params); | 
|  | } | 
|  |  | 
|  | // Nope, reverse the table. | 
|  | out = cmsBuildTabulatedToneCurve16(InCurve ->InterpParams->ContextID, nResultSamples, NULL); | 
|  | if (out == NULL) | 
|  | return NULL; | 
|  |  | 
|  | // We want to know if this is an ascending or descending table | 
|  | Ascending = !cmsIsToneCurveDescending(InCurve); | 
|  |  | 
|  | // Iterate across Y axis | 
|  | for (i=0; i < (int) nResultSamples; i++) { | 
|  |  | 
|  | y = (cmsFloat64Number) i * 65535.0 / (nResultSamples - 1); | 
|  |  | 
|  | // Find interval in which y is within. | 
|  | j = GetInterval(y, InCurve->Table16, InCurve->InterpParams); | 
|  | if (j >= 0) { | 
|  |  | 
|  |  | 
|  | // Get limits of interval | 
|  | x1 = InCurve ->Table16[j]; | 
|  | x2 = InCurve ->Table16[j+1]; | 
|  |  | 
|  | y1 = (cmsFloat64Number) (j * 65535.0) / (InCurve ->nEntries - 1); | 
|  | y2 = (cmsFloat64Number) ((j+1) * 65535.0 ) / (InCurve ->nEntries - 1); | 
|  |  | 
|  | // If collapsed, then use any | 
|  | if (x1 == x2) { | 
|  |  | 
|  | out ->Table16[i] = _cmsQuickSaturateWord(Ascending ? y2 : y1); | 
|  | continue; | 
|  |  | 
|  | } else { | 
|  |  | 
|  | // Interpolate | 
|  | a = (y2 - y1) / (x2 - x1); | 
|  | b = y2 - a * x2; | 
|  | } | 
|  | } | 
|  |  | 
|  | out ->Table16[i] = _cmsQuickSaturateWord(a* y + b); | 
|  | } | 
|  |  | 
|  |  | 
|  | return out; | 
|  | } | 
|  |  | 
|  | // Reverse a gamma table | 
|  | cmsToneCurve* CMSEXPORT cmsReverseToneCurve(const cmsToneCurve* InGamma) | 
|  | { | 
|  | _cmsAssert(InGamma != NULL); | 
|  |  | 
|  | return cmsReverseToneCurveEx(4096, InGamma); | 
|  | } | 
|  |  | 
|  | // From: Eilers, P.H.C. (1994) Smoothing and interpolation with finite | 
|  | // differences. in: Graphic Gems IV, Heckbert, P.S. (ed.), Academic press. | 
|  | // | 
|  | // Smoothing and interpolation with second differences. | 
|  | // | 
|  | //   Input:  weights (w), data (y): vector from 1 to m. | 
|  | //   Input:  smoothing parameter (lambda), length (m). | 
|  | //   Output: smoothed vector (z): vector from 1 to m. | 
|  |  | 
|  | static | 
|  | cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[], | 
|  | cmsFloat32Number z[], cmsFloat32Number lambda, int m) | 
|  | { | 
|  | int i, i1, i2; | 
|  | cmsFloat32Number *c, *d, *e; | 
|  | cmsBool st; | 
|  |  | 
|  |  | 
|  | c = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number)); | 
|  | d = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number)); | 
|  | e = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number)); | 
|  |  | 
|  | if (c != NULL && d != NULL && e != NULL) { | 
|  |  | 
|  |  | 
|  | d[1] = w[1] + lambda; | 
|  | c[1] = -2 * lambda / d[1]; | 
|  | e[1] = lambda /d[1]; | 
|  | z[1] = w[1] * y[1]; | 
|  | d[2] = w[2] + 5 * lambda - d[1] * c[1] *  c[1]; | 
|  | c[2] = (-4 * lambda - d[1] * c[1] * e[1]) / d[2]; | 
|  | e[2] = lambda / d[2]; | 
|  | z[2] = w[2] * y[2] - c[1] * z[1]; | 
|  |  | 
|  | for (i = 3; i < m - 1; i++) { | 
|  | i1 = i - 1; i2 = i - 2; | 
|  | d[i]= w[i] + 6 * lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2]; | 
|  | c[i] = (-4 * lambda -d[i1] * c[i1] * e[i1])/ d[i]; | 
|  | e[i] = lambda / d[i]; | 
|  | z[i] = w[i] * y[i] - c[i1] * z[i1] - e[i2] * z[i2]; | 
|  | } | 
|  |  | 
|  | i1 = m - 2; i2 = m - 3; | 
|  |  | 
|  | d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2]; | 
|  | c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1]; | 
|  | z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2]; | 
|  | i1 = m - 1; i2 = m - 2; | 
|  |  | 
|  | d[m] = w[m] + lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2]; | 
|  | z[m] = (w[m] * y[m] - c[i1] * z[i1] - e[i2] * z[i2]) / d[m]; | 
|  | z[m - 1] = z[m - 1] / d[m - 1] - c[m - 1] * z[m]; | 
|  |  | 
|  | for (i = m - 2; 1<= i; i--) | 
|  | z[i] = z[i] / d[i] - c[i] * z[i + 1] - e[i] * z[i + 2]; | 
|  |  | 
|  | st = TRUE; | 
|  | } | 
|  | else st = FALSE; | 
|  |  | 
|  | if (c != NULL) _cmsFree(ContextID, c); | 
|  | if (d != NULL) _cmsFree(ContextID, d); | 
|  | if (e != NULL) _cmsFree(ContextID, e); | 
|  |  | 
|  | return st; | 
|  | } | 
|  |  | 
|  | // Smooths a curve sampled at regular intervals. | 
|  | cmsBool  CMSEXPORT cmsSmoothToneCurve(cmsToneCurve* Tab, cmsFloat64Number lambda) | 
|  | { | 
|  | cmsBool SuccessStatus = TRUE; | 
|  | cmsFloat32Number *w, *y, *z; | 
|  | cmsUInt32Number i, nItems, Zeros, Poles; | 
|  | cmsBool notCheck = FALSE; | 
|  |  | 
|  | if (Tab != NULL && Tab->InterpParams != NULL) | 
|  | { | 
|  | cmsContext ContextID = Tab->InterpParams->ContextID; | 
|  |  | 
|  | if (!cmsIsToneCurveLinear(Tab)) // Only non-linear curves need smoothing | 
|  | { | 
|  | nItems = Tab->nEntries; | 
|  | if (nItems < MAX_NODES_IN_CURVE) | 
|  | { | 
|  | // Allocate one more item than needed | 
|  | w = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number)); | 
|  | y = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number)); | 
|  | z = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number)); | 
|  |  | 
|  | if (w != NULL && y != NULL && z != NULL) // Ensure no memory allocation failure | 
|  | { | 
|  | memset(w, 0, (nItems + 1) * sizeof(cmsFloat32Number)); | 
|  | memset(y, 0, (nItems + 1) * sizeof(cmsFloat32Number)); | 
|  | memset(z, 0, (nItems + 1) * sizeof(cmsFloat32Number)); | 
|  |  | 
|  | for (i = 0; i < nItems; i++) | 
|  | { | 
|  | y[i + 1] = (cmsFloat32Number)Tab->Table16[i]; | 
|  | w[i + 1] = 1.0; | 
|  | } | 
|  |  | 
|  | if (lambda < 0) | 
|  | { | 
|  | notCheck = TRUE; | 
|  | lambda = -lambda; | 
|  | } | 
|  |  | 
|  | if (smooth2(ContextID, w, y, z, (cmsFloat32Number)lambda, (int)nItems)) | 
|  | { | 
|  | // Do some reality - checking... | 
|  |  | 
|  | Zeros = Poles = 0; | 
|  | for (i = nItems; i > 1; --i) | 
|  | { | 
|  | if (z[i] == 0.) Zeros++; | 
|  | if (z[i] >= 65535.) Poles++; | 
|  | if (z[i] < z[i - 1]) | 
|  | { | 
|  | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Non-Monotonic."); | 
|  | SuccessStatus = notCheck; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SuccessStatus && Zeros > (nItems / 3)) | 
|  | { | 
|  | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly zeros."); | 
|  | SuccessStatus = notCheck; | 
|  | } | 
|  |  | 
|  | if (SuccessStatus && Poles > (nItems / 3)) | 
|  | { | 
|  | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly poles."); | 
|  | SuccessStatus = notCheck; | 
|  | } | 
|  |  | 
|  | if (SuccessStatus) // Seems ok | 
|  | { | 
|  | for (i = 0; i < nItems; i++) | 
|  | { | 
|  | // Clamp to cmsUInt16Number | 
|  | Tab->Table16[i] = _cmsQuickSaturateWord(z[i + 1]); | 
|  | } | 
|  | } | 
|  | } | 
|  | else // Could not smooth | 
|  | { | 
|  | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Function smooth2 failed."); | 
|  | SuccessStatus = FALSE; | 
|  | } | 
|  | } | 
|  | else // One or more buffers could not be allocated | 
|  | { | 
|  | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Could not allocate memory."); | 
|  | SuccessStatus = FALSE; | 
|  | } | 
|  |  | 
|  | if (z != NULL) | 
|  | _cmsFree(ContextID, z); | 
|  |  | 
|  | if (y != NULL) | 
|  | _cmsFree(ContextID, y); | 
|  |  | 
|  | if (w != NULL) | 
|  | _cmsFree(ContextID, w); | 
|  | } | 
|  | else // too many items in the table | 
|  | { | 
|  | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Too many points."); | 
|  | SuccessStatus = FALSE; | 
|  | } | 
|  | } | 
|  | } | 
|  | else // Tab parameter or Tab->InterpParams is NULL | 
|  | { | 
|  | // Can't signal an error here since the ContextID is not known at this point | 
|  | SuccessStatus = FALSE; | 
|  | } | 
|  |  | 
|  | return SuccessStatus; | 
|  | } | 
|  |  | 
|  | // Is a table linear? Do not use parametric since we cannot guarantee some weird parameters resulting | 
|  | // in a linear table. This way assures it is linear in 12 bits, which should be enough in most cases. | 
|  | cmsBool CMSEXPORT cmsIsToneCurveLinear(const cmsToneCurve* Curve) | 
|  | { | 
|  | int i; | 
|  | int diff; | 
|  |  | 
|  | _cmsAssert(Curve != NULL); | 
|  |  | 
|  | for (i=0; i < (int) Curve ->nEntries; i++) { | 
|  |  | 
|  | diff = abs((int) Curve->Table16[i] - (int) _cmsQuantizeVal(i, Curve ->nEntries)); | 
|  | if (diff > 0x0f) | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | // Same, but for monotonicity | 
|  | cmsBool  CMSEXPORT cmsIsToneCurveMonotonic(const cmsToneCurve* t) | 
|  | { | 
|  | cmsUInt32Number n; | 
|  | int i, last; | 
|  | cmsBool lDescending; | 
|  |  | 
|  | _cmsAssert(t != NULL); | 
|  |  | 
|  | // Degenerated curves are monotonic? Ok, let's pass them | 
|  | n = t ->nEntries; | 
|  | if (n < 2) return TRUE; | 
|  |  | 
|  | // Curve direction | 
|  | lDescending = cmsIsToneCurveDescending(t); | 
|  |  | 
|  | if (lDescending) { | 
|  |  | 
|  | last = t ->Table16[0]; | 
|  |  | 
|  | for (i = 1; i < (int) n; i++) { | 
|  |  | 
|  | if (t ->Table16[i] - last > 2) // We allow some ripple | 
|  | return FALSE; | 
|  | else | 
|  | last = t ->Table16[i]; | 
|  |  | 
|  | } | 
|  | } | 
|  | else { | 
|  |  | 
|  | last = t ->Table16[n-1]; | 
|  |  | 
|  | for (i = (int) n - 2; i >= 0; --i) { | 
|  |  | 
|  | if (t ->Table16[i] - last > 2) | 
|  | return FALSE; | 
|  | else | 
|  | last = t ->Table16[i]; | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | // Same, but for descending tables | 
|  | cmsBool  CMSEXPORT cmsIsToneCurveDescending(const cmsToneCurve* t) | 
|  | { | 
|  | _cmsAssert(t != NULL); | 
|  |  | 
|  | return t ->Table16[0] > t ->Table16[t ->nEntries-1]; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Another info fn: is out gamma table multisegment? | 
|  | cmsBool  CMSEXPORT cmsIsToneCurveMultisegment(const cmsToneCurve* t) | 
|  | { | 
|  | _cmsAssert(t != NULL); | 
|  |  | 
|  | return t -> nSegments > 1; | 
|  | } | 
|  |  | 
|  | cmsInt32Number  CMSEXPORT cmsGetToneCurveParametricType(const cmsToneCurve* t) | 
|  | { | 
|  | _cmsAssert(t != NULL); | 
|  |  | 
|  | if (t -> nSegments != 1) return 0; | 
|  | return t ->Segments[0].Type; | 
|  | } | 
|  |  | 
|  | // We need accuracy this time | 
|  | cmsFloat32Number CMSEXPORT cmsEvalToneCurveFloat(const cmsToneCurve* Curve, cmsFloat32Number v) | 
|  | { | 
|  | _cmsAssert(Curve != NULL); | 
|  |  | 
|  | // Check for 16 bits table. If so, this is a limited-precision tone curve | 
|  | if (Curve ->nSegments == 0) { | 
|  |  | 
|  | cmsUInt16Number In, Out; | 
|  |  | 
|  | In = (cmsUInt16Number) _cmsQuickSaturateWord(v * 65535.0); | 
|  | Out = cmsEvalToneCurve16(Curve, In); | 
|  |  | 
|  | return (cmsFloat32Number) (Out / 65535.0); | 
|  | } | 
|  |  | 
|  | return (cmsFloat32Number) EvalSegmentedFn(Curve, v); | 
|  | } | 
|  |  | 
|  | // We need xput over here | 
|  | cmsUInt16Number CMSEXPORT cmsEvalToneCurve16(const cmsToneCurve* Curve, cmsUInt16Number v) | 
|  | { | 
|  | cmsUInt16Number out; | 
|  |  | 
|  | _cmsAssert(Curve != NULL); | 
|  |  | 
|  | Curve ->InterpParams ->Interpolation.Lerp16(&v, &out, Curve ->InterpParams); | 
|  | return out; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Least squares fitting. | 
|  | // A mathematical procedure for finding the best-fitting curve to a given set of points by | 
|  | // minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve. | 
|  | // The sum of the squares of the offsets is used instead of the offset absolute values because | 
|  | // this allows the residuals to be treated as a continuous differentiable quantity. | 
|  | // | 
|  | // y = f(x) = x ^ g | 
|  | // | 
|  | // R  = (yi - (xi^g)) | 
|  | // R2 = (yi - (xi^g))2 | 
|  | // SUM R2 = SUM (yi - (xi^g))2 | 
|  | // | 
|  | // dR2/dg = -2 SUM x^g log(x)(y - x^g) | 
|  | // solving for dR2/dg = 0 | 
|  | // | 
|  | // g = 1/n * SUM(log(y) / log(x)) | 
|  |  | 
|  | cmsFloat64Number CMSEXPORT cmsEstimateGamma(const cmsToneCurve* t, cmsFloat64Number Precision) | 
|  | { | 
|  | cmsFloat64Number gamma, sum, sum2; | 
|  | cmsFloat64Number n, x, y, Std; | 
|  | cmsUInt32Number i; | 
|  |  | 
|  | _cmsAssert(t != NULL); | 
|  |  | 
|  | sum = sum2 = n = 0; | 
|  |  | 
|  | // Excluding endpoints | 
|  | for (i=1; i < (MAX_NODES_IN_CURVE-1); i++) { | 
|  |  | 
|  | x = (cmsFloat64Number) i / (MAX_NODES_IN_CURVE-1); | 
|  | y = (cmsFloat64Number) cmsEvalToneCurveFloat(t, (cmsFloat32Number) x); | 
|  |  | 
|  | // Avoid 7% on lower part to prevent | 
|  | // artifacts due to linear ramps | 
|  |  | 
|  | if (y > 0. && y < 1. && x > 0.07) { | 
|  |  | 
|  | gamma = log(y) / log(x); | 
|  | sum  += gamma; | 
|  | sum2 += gamma * gamma; | 
|  | n++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We need enough valid samples | 
|  | if (n <= 1) return -1.0; | 
|  |  | 
|  | // Take a look on SD to see if gamma isn't exponential at all | 
|  | Std = sqrt((n * sum2 - sum * sum) / (n*(n-1))); | 
|  |  | 
|  | if (Std > Precision) | 
|  | return -1.0; | 
|  |  | 
|  | return (sum / n);   // The mean | 
|  | } | 
|  |  | 
|  |  | 
|  | // Retrieve parameters on one-segment tone curves | 
|  |  | 
|  | cmsFloat64Number* CMSEXPORT cmsGetToneCurveParams(const cmsToneCurve* t) | 
|  | { | 
|  | _cmsAssert(t != NULL); | 
|  |  | 
|  | if (t->nSegments != 1) return NULL; | 
|  | return t->Segments[0].Params; | 
|  | } |