 Sign in

pdfium / pdfium / refs/heads/main
	commit	4b608cc6995d1abb5d7e2480de9abe35bc3799be	[log] [tgz]
	author	Lei Zhang <thestig@chromium.org>	Fri Mar 08 20:52:49 2024 +0000
	committer	Pdfium LUCI CQ <pdfium-scoped@luci-project-accounts.iam.gserviceaccount.com>	Fri Mar 08 20:52:49 2024 +0000
	tree	bdceef68686421f432dcef97f13b311ffcbae0ad
	parent	95339d6687c122254c4a383b6a5f509eee1f4fcf [diff]

Roll base/allocator/partition_allocator/ 42bf756b3..dd11a7511 (19 commits)

https://chromium.googlesource.com/chromium/src/base/allocator/partition_allocator.git/+log/42bf756b3176..dd11a7511c80

Created with:
 roll-dep base/allocator/partition_allocator

Change-Id: Ib4f0aaa1b9923584ecf08e20c05591644368658c
Reviewed-on: https://pdfium-review.googlesource.com/c/pdfium/+/117294
Reviewed-by: Thomas Sepez <tsepez@google.com>
Commit-Queue: Lei Zhang <thestig@chromium.org>

	DEPS[diff]

1 file changed
tree: bdceef68686421f432dcef97f13b311ffcbae0ad
	build_overrides/
	constants/
	core/
	docs/
	fpdfsdk/
	fxbarcode/
	fxjs/
	public/
	samples/
	skia/
	testing/
	third_party/
	tools/
	xfa/
	.clang-format
	.gitattributes
	.gitignore
	.gn
	.style.yapf
	.vpython3
	AUTHORS
	BUILD.gn
	codereview.settings
	CONTRIBUTING.md
	DEPS
	DIR_METADATA
	LICENSE
	navbar.md
	OWNERS
	pdfium.gni
	PRESUBMIT.py
	PRESUBMIT_test.py
	PRESUBMIT_test_mocks.py
	README.md

README.md
PDFium
Prerequisites
PDFium uses the same build tooling as Chromium. See the platform-specific Chromium build instructions to get started, but replace Chromium's “Get the code” instructions with PDFium's.
	Chromium Linux build instructions
	Chromium Mac build instructions
	Chromium Windows build instructions

CPU Architectures supported
The default architecture for Windows, Linux, and Mac is “x64”. On Windows, “x86” is also supported. GN parameter “target_cpu = "x86"” can be used to override the default value. If you specify Android build, the default CPU architecture will be “arm”.
It is expected that there are still some places lurking in the code which will not function properly on big-endian architectures. Bugs and/or patches are welcome, however providing this support is not a priority at this time.
Google employees
Run: download_from_google_storage --config and follow the authentication instructions. Note that you must authenticate with your @google.com credentials. Enter “0” if asked for a project-id.
Once you've done this, the toolchain will be installed automatically for you in the Generate the build files step below.
The toolchain will be in depot_tools\win_toolchain\vs_files\<hash>, and windbg can be found in depot_tools\win_toolchain\vs_files\<hash>\win_sdk\Debuggers.
If you want the IDE for debugging and editing, you will need to install it separately, but this is optional and not needed for building PDFium.
Get the code
The name of the top-level directory does not matter. In the following example, the directory name is “repo”. This directory must not have been used before by gclient config as each directory can only house a single gclient configuration.
mkdir repo
cd repo
gclient config --unmanaged https://pdfium.googlesource.com/pdfium.git
gclient sync
cd pdfium

On Linux, additional build dependencies need to be installed by running the following from the pdfium directory.
./build/install-build-deps.sh

Generate the build files
PDFium uses GN to generate the build files and Ninja to execute the build files. Both of these are included with the depot_tools checkout.
Selecting build configuration
PDFium may be built either with or without JavaScript support, and with or without XFA forms support. Both of these features are enabled by default. Also note that the XFA feature requires JavaScript.
Configuration is done by executing gn args <directory> to configure the build. This will launch an editor in which you can set the following arguments. By convention, <directory> should be named out/foo, and some tools / test support code only works if one follows this convention. A typical <directory> name is out/Debug.
use_remoteexec = false # Approved users only. Do necessary setup & authentication first.
is_debug = true # Enable debugging features.

Set true to enable experimental Skia backend.
pdf_use_skia = false

Set true to enable experimental Fontations backend.
pdf_enable_fontations = false

pdf_enable_xfa = true # Set false to remove XFA support (implies JS support).
pdf_enable_v8 = true # Set false to remove Javascript support.
pdf_is_standalone = true # Set for a non-embedded build.
is_component_build = false # Disable component build (Though it should work)

For sample applications like pdfium_test to build, one must set pdf_is_standalone = true.
By default, the entire project builds with C++20.
By default, PDFium expects to build with a clang compiler that provides additional chrome plugins. To build against a vanilla one lacking these, one must set clang_use_chrome_plugins = false.
When complete the arguments will be stored in <directory>/args.gn, and GN will automatically use the new arguments to generate build files. Should your files fail to generate, please double-check that you have set use_sysroot as indicated above.
Building the code
You can build the sample program by running: ninja -C <directory> pdfium_test You can build the entire product (which includes a few unit tests) by running: ninja -C <directory> pdfium_all.
Running the sample program
The pdfium_test program supports reading, parsing, and rasterizing the pages of a .pdf file to .ppm or .png output image files (Windows supports two other formats). For example: <directory>/pdfium_test --ppm path/to/myfile.pdf. Note that this will write output images to path/to/myfile.pdf.<n>.ppm. Run pdfium_test --help to see all the options.
Testing
There are currently several test suites that can be run:
	pdfium_unittests
	pdfium_embeddertests
	testing/tools/run_corpus_tests.py
	testing/tools/run_javascript_tests.py
	testing/tools/run_pixel_tests.py

It is possible the tests in the testing directory can fail due to font differences on the various platforms. These tests are reliable on the bots. If you see failures, it can be a good idea to run the tests on the tip-of-tree checkout to see if the same failures appear.
Pixel Tests
If your change affects rendering, a pixel test should be added. Simply add a .in or .pdf file in testing/resources/pixel and the pixel runner will pick it up at the next run.
Make sure that your test case doesn't have any copyright issues. It should also be a minimal test case focusing on the bug that renders the same way in many PDF viewers. Try to avoid binary data in streams by using the ASCIIHexDecode simply because it makes the PDF more readable in a text editor.
To try out your new test, you can call the run_pixel_tests.py script:
$./testing/tools/run_pixel_tests.py your_new_file.in

To generate the expected image, you can use the make_expected.sh script:
$./testing/tools/make_expected.sh your_new_file.pdf

Please make sure to have optipng installed which optimized the file size of the resulting png.
.in files
.in files are PDF template files. PDF files contain many byte offsets that have to be kept correct or the file won't be valid. The template makes this easier by replacing the byte offsets with certain keywords.
This saves space and also allows an easy way to reduce the test case to the essentials as you can simply remove everything that is not necessary.
A simple example can be found here.
To transform this into a PDF, you can use the fixup_pdf_template.py tool:
$./testing/tools/fixup_pdf_template.py your_file.in

This will create a your_file.pdf in the same directory as your_file.in.
There is no official style guide for the .in file, but a consistent style is preferred simply to help with readability. If possible, object numbers should be consecutive and /Type and /SubType should be on top of a dictionary to make object identification easier.
Embedding PDFium in your own projects
The public/ directory contains header files for the APIs available for use by embedders of PDFium. The PDFium project endeavors to keep these as stable as possible.
Outside of the public/ directory, code may change at any time, and embedders should not directly call these routines.
Code Coverage
Code coverage reports for PDFium can be generated in Linux development environments. Details can be found here.
Chromium provides code coverage reports for PDFium here. PDFium is located in third_party/pdfium in Chromium‘s source code. This includes code coverage from PDFium’s fuzzers.
Waterfall
The current health of the source tree can be found here.
Community
There are several mailing lists that are setup:
	PDFium
	PDFium Reviews
	PDFium Bugs

Note, the Reviews and Bugs lists are typically read-only.
Bugs
PDFium uses this bug tracker, but for security bugs, please use Chromium's security bug template and add the “Cr-Internals-Plugins-PDF” label.
Contributing code
See the CONTRIBUTING document for more information on contributing to the PDFium project.

 Powered by Gitiles| Privacy| Termstxt json
