blob: a7632b135df41fc8dabaa259ee0013ee5d174dc3 [file] [log] [blame]
// Copyright 2017 The PDFium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fxge/dib/cstretchengine.h"
#include <math.h>
#include <algorithm>
#include <type_traits>
#include <utility>
#include "core/fxcrt/fx_safe_types.h"
#include "core/fxcrt/fx_system.h"
#include "core/fxcrt/pauseindicator_iface.h"
#include "core/fxge/calculate_pitch.h"
#include "core/fxge/dib/cfx_dibbase.h"
#include "core/fxge/dib/cfx_dibitmap.h"
#include "core/fxge/dib/fx_dib.h"
#include "core/fxge/dib/scanlinecomposer_iface.h"
#include "third_party/base/check.h"
#include "third_party/base/cxx17_backports.h"
static_assert(
std::is_trivially_destructible<CStretchEngine::PixelWeight>::value,
"PixelWeight storage may be re-used without invoking its destructor");
// static
bool CStretchEngine::UseInterpolateBilinear(
const FXDIB_ResampleOptions& options,
int dest_width,
int dest_height,
int src_width,
int src_height) {
return !options.bInterpolateBilinear && !options.bNoSmoothing &&
abs(dest_width) != 0 &&
abs(dest_height) / 8 <
static_cast<long long>(src_width) * src_height / abs(dest_width);
}
// static
size_t CStretchEngine::PixelWeight::TotalBytesForWeightCount(
size_t weight_count) {
// Always room for one weight even for empty ranges due to declaration
// of m_Weights[1] in the header. Don't shrink below this since
// CalculateWeights() relies on this later.
const size_t extra_weights = weight_count > 0 ? weight_count - 1 : 0;
FX_SAFE_SIZE_T total_bytes = extra_weights;
total_bytes *= sizeof(m_Weights[0]);
total_bytes += sizeof(PixelWeight);
return total_bytes.ValueOrDie();
}
CStretchEngine::WeightTable::WeightTable() = default;
CStretchEngine::WeightTable::~WeightTable() = default;
bool CStretchEngine::WeightTable::CalculateWeights(
int dest_len,
int dest_min,
int dest_max,
int src_len,
int src_min,
int src_max,
const FXDIB_ResampleOptions& options) {
// 512MB should be large enough for this while preventing OOM.
static constexpr size_t kMaxTableBytesAllowed = 512 * 1024 * 1024;
// Help the compiler realize that these can't change during a loop iteration:
const bool bilinear = options.bInterpolateBilinear;
m_DestMin = 0;
m_ItemSizeBytes = 0;
m_WeightTablesSizeBytes = 0;
m_WeightTables.clear();
if (dest_len == 0)
return true;
if (dest_min > dest_max)
return false;
m_DestMin = dest_min;
const double scale = static_cast<double>(src_len) / dest_len;
const double base = dest_len < 0 ? src_len : 0;
const size_t weight_count = static_cast<size_t>(ceil(fabs(scale))) + 1;
m_ItemSizeBytes = PixelWeight::TotalBytesForWeightCount(weight_count);
const size_t dest_range = static_cast<size_t>(dest_max - dest_min);
const size_t kMaxTableItemsAllowed = kMaxTableBytesAllowed / m_ItemSizeBytes;
if (dest_range > kMaxTableItemsAllowed)
return false;
m_WeightTablesSizeBytes = dest_range * m_ItemSizeBytes;
m_WeightTables.resize(m_WeightTablesSizeBytes);
if (options.bNoSmoothing || fabs(scale) < 1.0f) {
for (int dest_pixel = dest_min; dest_pixel < dest_max; ++dest_pixel) {
PixelWeight& pixel_weights = *GetPixelWeight(dest_pixel);
double src_pos = dest_pixel * scale + scale / 2 + base;
if (bilinear) {
int src_start = static_cast<int>(floor(src_pos - 0.5));
int src_end = static_cast<int>(floor(src_pos + 0.5));
src_start = std::max(src_start, src_min);
src_end = std::min(src_end, src_max - 1);
pixel_weights.SetStartEnd(src_start, src_end, weight_count);
if (pixel_weights.m_SrcStart >= pixel_weights.m_SrcEnd) {
// Always room for one weight per size calculation.
pixel_weights.m_Weights[0] = kFixedPointOne;
} else {
pixel_weights.m_Weights[1] =
FixedFromDouble(src_pos - pixel_weights.m_SrcStart - 0.5f);
pixel_weights.m_Weights[0] =
kFixedPointOne - pixel_weights.m_Weights[1];
}
} else {
int pixel_pos = static_cast<int>(floor(src_pos));
int src_start = std::max(pixel_pos, src_min);
int src_end = std::min(pixel_pos, src_max - 1);
pixel_weights.SetStartEnd(src_start, src_end, weight_count);
pixel_weights.m_Weights[0] = kFixedPointOne;
}
}
return true;
}
for (int dest_pixel = dest_min; dest_pixel < dest_max; ++dest_pixel) {
PixelWeight& pixel_weights = *GetPixelWeight(dest_pixel);
double src_start = dest_pixel * scale + base;
double src_end = src_start + scale;
int start_i = floor(std::min(src_start, src_end));
int end_i = floor(std::max(src_start, src_end));
start_i = std::max(start_i, src_min);
end_i = std::min(end_i, src_max - 1);
if (start_i > end_i) {
start_i = std::min(start_i, src_max - 1);
pixel_weights.SetStartEnd(start_i, start_i, weight_count);
continue;
}
pixel_weights.SetStartEnd(start_i, end_i, weight_count);
uint32_t remaining = kFixedPointOne;
double rounding_error = 0.0;
for (int j = start_i; j < end_i; ++j) {
double dest_start = (j - base) / scale;
double dest_end = (j + 1 - base) / scale;
if (dest_start > dest_end)
std::swap(dest_start, dest_end);
double area_start = std::max(dest_start, static_cast<double>(dest_pixel));
double area_end = std::min(dest_end, static_cast<double>(dest_pixel + 1));
double weight = std::max(0.0, area_end - area_start);
uint32_t fixed_weight = FixedFromDouble(weight + rounding_error);
pixel_weights.SetWeightForPosition(j, fixed_weight);
remaining -= fixed_weight;
rounding_error =
weight - static_cast<double>(fixed_weight) / kFixedPointOne;
}
// Note: underflow is defined behaviour for unsigned types and will
// result in an out-of-range value.
if (remaining && remaining <= kFixedPointOne) {
pixel_weights.SetWeightForPosition(end_i, remaining);
} else {
pixel_weights.RemoveLastWeightAndAdjust(remaining);
}
}
return true;
}
const CStretchEngine::PixelWeight* CStretchEngine::WeightTable::GetPixelWeight(
int pixel) const {
DCHECK(pixel >= m_DestMin);
return reinterpret_cast<const PixelWeight*>(
&m_WeightTables[(pixel - m_DestMin) * m_ItemSizeBytes]);
}
CStretchEngine::PixelWeight* CStretchEngine::WeightTable::GetPixelWeight(
int pixel) {
return const_cast<PixelWeight*>(std::as_const(*this).GetPixelWeight(pixel));
}
CStretchEngine::CStretchEngine(ScanlineComposerIface* pDestBitmap,
FXDIB_Format dest_format,
int dest_width,
int dest_height,
const FX_RECT& clip_rect,
const RetainPtr<const CFX_DIBBase>& pSrcBitmap,
const FXDIB_ResampleOptions& options)
: m_DestFormat(dest_format),
m_DestBpp(GetBppFromFormat(dest_format)),
m_SrcBpp(pSrcBitmap->GetBPP()),
m_bHasAlpha(pSrcBitmap->IsAlphaFormat()),
m_pSource(pSrcBitmap),
m_pSrcPalette(pSrcBitmap->GetPaletteSpan()),
m_SrcWidth(pSrcBitmap->GetWidth()),
m_SrcHeight(pSrcBitmap->GetHeight()),
m_pDestBitmap(pDestBitmap),
m_DestWidth(dest_width),
m_DestHeight(dest_height),
m_DestClip(clip_rect) {
absl::optional<uint32_t> maybe_size =
fxge::CalculatePitch32(m_DestBpp, clip_rect.Width());
if (!maybe_size.has_value())
return;
m_DestScanline.resize(maybe_size.value());
if (dest_format == FXDIB_Format::kRgb32)
std::fill(m_DestScanline.begin(), m_DestScanline.end(), 255);
m_InterPitch = fxge::CalculatePitch32OrDie(m_DestBpp, m_DestClip.Width());
m_ExtraMaskPitch = fxge::CalculatePitch32OrDie(8, m_DestClip.Width());
if (options.bNoSmoothing) {
m_ResampleOptions.bNoSmoothing = true;
} else {
if (UseInterpolateBilinear(options, dest_width, dest_height, m_SrcWidth,
m_SrcHeight)) {
m_ResampleOptions.bInterpolateBilinear = true;
} else {
m_ResampleOptions = options;
}
}
double scale_x = static_cast<float>(m_SrcWidth) / m_DestWidth;
double scale_y = static_cast<float>(m_SrcHeight) / m_DestHeight;
double base_x = m_DestWidth > 0 ? 0.0f : m_DestWidth;
double base_y = m_DestHeight > 0 ? 0.0f : m_DestHeight;
double src_left = scale_x * (clip_rect.left + base_x);
double src_right = scale_x * (clip_rect.right + base_x);
double src_top = scale_y * (clip_rect.top + base_y);
double src_bottom = scale_y * (clip_rect.bottom + base_y);
if (src_left > src_right)
std::swap(src_left, src_right);
if (src_top > src_bottom)
std::swap(src_top, src_bottom);
m_SrcClip.left = static_cast<int>(floor(src_left));
m_SrcClip.right = static_cast<int>(ceil(src_right));
m_SrcClip.top = static_cast<int>(floor(src_top));
m_SrcClip.bottom = static_cast<int>(ceil(src_bottom));
FX_RECT src_rect(0, 0, m_SrcWidth, m_SrcHeight);
m_SrcClip.Intersect(src_rect);
switch (m_SrcBpp) {
case 1:
m_TransMethod = m_DestBpp == 8 ? TransformMethod::k1BppTo8Bpp
: TransformMethod::k1BppToManyBpp;
break;
case 8:
if (m_DestBpp == 8) {
m_TransMethod = m_bHasAlpha ? TransformMethod::k8BppTo8BppWithAlpha
: TransformMethod::k8BppTo8Bpp;
} else {
m_TransMethod = m_bHasAlpha ? TransformMethod::k8BppToManyBppWithAlpha
: TransformMethod::k8BppToManyBpp;
}
break;
default:
m_TransMethod = m_bHasAlpha ? TransformMethod::kManyBpptoManyBppWithAlpha
: TransformMethod::kManyBpptoManyBpp;
break;
}
}
CStretchEngine::~CStretchEngine() = default;
bool CStretchEngine::Continue(PauseIndicatorIface* pPause) {
while (m_State == State::kHorizontal) {
if (ContinueStretchHorz(pPause))
return true;
m_State = State::kVertical;
StretchVert();
}
return false;
}
bool CStretchEngine::StartStretchHorz() {
if (m_DestWidth == 0 || m_InterPitch == 0 || m_DestScanline.empty())
return false;
FX_SAFE_SIZE_T safe_size = m_SrcClip.Height();
safe_size *= m_InterPitch;
const size_t size = safe_size.ValueOrDefault(0);
if (size == 0)
return false;
m_InterBuf = FixedTryAllocZeroedDataVector<uint8_t>(size);
if (m_InterBuf.empty())
return false;
if (m_pSource && m_bHasAlpha && m_pSource->HasAlphaMask()) {
m_ExtraAlphaBuf.resize(m_SrcClip.Height(), m_ExtraMaskPitch);
m_DestMaskScanline.resize(m_ExtraMaskPitch);
}
if (!m_WeightTable.CalculateWeights(
m_DestWidth, m_DestClip.left, m_DestClip.right, m_SrcWidth,
m_SrcClip.left, m_SrcClip.right, m_ResampleOptions)) {
return false;
}
m_CurRow = m_SrcClip.top;
m_State = State::kHorizontal;
return true;
}
bool CStretchEngine::ContinueStretchHorz(PauseIndicatorIface* pPause) {
if (!m_DestWidth)
return false;
if (m_pSource->SkipToScanline(m_CurRow, pPause))
return true;
int Bpp = m_DestBpp / 8;
static const int kStrechPauseRows = 10;
int rows_to_go = kStrechPauseRows;
for (; m_CurRow < m_SrcClip.bottom; ++m_CurRow) {
if (rows_to_go == 0) {
if (pPause && pPause->NeedToPauseNow())
return true;
rows_to_go = kStrechPauseRows;
}
const uint8_t* src_scan = m_pSource->GetScanline(m_CurRow).data();
pdfium::span<uint8_t> dest_span = m_InterBuf.writable_span().subspan(
(m_CurRow - m_SrcClip.top) * m_InterPitch, m_InterPitch);
size_t dest_span_index = 0;
const uint8_t* src_scan_mask = nullptr;
uint8_t* dest_scan_mask = nullptr;
if (!m_ExtraAlphaBuf.empty()) {
src_scan_mask = m_pSource->GetAlphaMaskScanline(m_CurRow).data();
dest_scan_mask = m_ExtraAlphaBuf.data() +
(m_CurRow - m_SrcClip.top) * m_ExtraMaskPitch;
}
// TODO(npm): reduce duplicated code here
switch (m_TransMethod) {
case TransformMethod::k1BppTo8Bpp:
case TransformMethod::k1BppToManyBpp: {
for (int col = m_DestClip.left; col < m_DestClip.right; ++col) {
PixelWeight* pWeights = m_WeightTable.GetPixelWeight(col);
uint32_t dest_a = 0;
for (int j = pWeights->m_SrcStart; j <= pWeights->m_SrcEnd; ++j) {
uint32_t pixel_weight = pWeights->GetWeightForPosition(j);
if (src_scan[j / 8] & (1 << (7 - j % 8)))
dest_a += pixel_weight * 255;
}
dest_span[dest_span_index++] = PixelFromFixed(dest_a);
}
break;
}
case TransformMethod::k8BppTo8Bpp: {
for (int col = m_DestClip.left; col < m_DestClip.right; ++col) {
PixelWeight* pWeights = m_WeightTable.GetPixelWeight(col);
uint32_t dest_a = 0;
for (int j = pWeights->m_SrcStart; j <= pWeights->m_SrcEnd; ++j) {
uint32_t pixel_weight = pWeights->GetWeightForPosition(j);
dest_a += pixel_weight * src_scan[j];
}
dest_span[dest_span_index++] = PixelFromFixed(dest_a);
}
break;
}
case TransformMethod::k8BppTo8BppWithAlpha: {
for (int col = m_DestClip.left; col < m_DestClip.right; ++col) {
PixelWeight* pWeights = m_WeightTable.GetPixelWeight(col);
uint32_t dest_a = 0;
uint32_t dest_r = 0;
for (int j = pWeights->m_SrcStart; j <= pWeights->m_SrcEnd; ++j) {
uint32_t pixel_weight = pWeights->GetWeightForPosition(j);
pixel_weight = pixel_weight * src_scan_mask[j] / 255;
dest_r += pixel_weight * src_scan[j];
dest_a += pixel_weight;
}
dest_span[dest_span_index++] = PixelFromFixed(dest_r);
*dest_scan_mask++ = PixelFromFixed(255 * dest_a);
}
break;
}
case TransformMethod::k8BppToManyBpp: {
for (int col = m_DestClip.left; col < m_DestClip.right; ++col) {
PixelWeight* pWeights = m_WeightTable.GetPixelWeight(col);
uint32_t dest_r = 0;
uint32_t dest_g = 0;
uint32_t dest_b = 0;
for (int j = pWeights->m_SrcStart; j <= pWeights->m_SrcEnd; ++j) {
uint32_t pixel_weight = pWeights->GetWeightForPosition(j);
unsigned long argb = m_pSrcPalette[src_scan[j]];
if (m_DestFormat == FXDIB_Format::kRgb) {
dest_r += pixel_weight * static_cast<uint8_t>(argb >> 16);
dest_g += pixel_weight * static_cast<uint8_t>(argb >> 8);
dest_b += pixel_weight * static_cast<uint8_t>(argb);
} else {
dest_b += pixel_weight * static_cast<uint8_t>(argb >> 24);
dest_g += pixel_weight * static_cast<uint8_t>(argb >> 16);
dest_r += pixel_weight * static_cast<uint8_t>(argb >> 8);
}
}
dest_span[dest_span_index++] = PixelFromFixed(dest_b);
dest_span[dest_span_index++] = PixelFromFixed(dest_g);
dest_span[dest_span_index++] = PixelFromFixed(dest_r);
}
break;
}
case TransformMethod::k8BppToManyBppWithAlpha: {
for (int col = m_DestClip.left; col < m_DestClip.right; ++col) {
PixelWeight* pWeights = m_WeightTable.GetPixelWeight(col);
uint32_t dest_a = 0;
uint32_t dest_r = 0;
uint32_t dest_g = 0;
uint32_t dest_b = 0;
for (int j = pWeights->m_SrcStart; j <= pWeights->m_SrcEnd; ++j) {
uint32_t pixel_weight = pWeights->GetWeightForPosition(j);
pixel_weight = pixel_weight * src_scan_mask[j] / 255;
unsigned long argb = m_pSrcPalette[src_scan[j]];
dest_b += pixel_weight * static_cast<uint8_t>(argb >> 24);
dest_g += pixel_weight * static_cast<uint8_t>(argb >> 16);
dest_r += pixel_weight * static_cast<uint8_t>(argb >> 8);
dest_a += pixel_weight;
}
dest_span[dest_span_index++] = PixelFromFixed(dest_b);
dest_span[dest_span_index++] = PixelFromFixed(dest_g);
dest_span[dest_span_index++] = PixelFromFixed(dest_r);
*dest_scan_mask++ = PixelFromFixed(255 * dest_a);
}
break;
}
case TransformMethod::kManyBpptoManyBpp: {
for (int col = m_DestClip.left; col < m_DestClip.right; ++col) {
PixelWeight* pWeights = m_WeightTable.GetPixelWeight(col);
uint32_t dest_r = 0;
uint32_t dest_g = 0;
uint32_t dest_b = 0;
for (int j = pWeights->m_SrcStart; j <= pWeights->m_SrcEnd; ++j) {
uint32_t pixel_weight = pWeights->GetWeightForPosition(j);
const uint8_t* src_pixel = src_scan + j * Bpp;
dest_b += pixel_weight * (*src_pixel++);
dest_g += pixel_weight * (*src_pixel++);
dest_r += pixel_weight * (*src_pixel);
}
dest_span[dest_span_index++] = PixelFromFixed(dest_b);
dest_span[dest_span_index++] = PixelFromFixed(dest_g);
dest_span[dest_span_index++] = PixelFromFixed(dest_r);
dest_span_index += Bpp - 3;
}
break;
}
case TransformMethod::kManyBpptoManyBppWithAlpha: {
for (int col = m_DestClip.left; col < m_DestClip.right; ++col) {
PixelWeight* pWeights = m_WeightTable.GetPixelWeight(col);
uint32_t dest_a = 0;
uint32_t dest_r = 0;
uint32_t dest_g = 0;
uint32_t dest_b = 0;
for (int j = pWeights->m_SrcStart; j <= pWeights->m_SrcEnd; ++j) {
uint32_t pixel_weight = pWeights->GetWeightForPosition(j);
const uint8_t* src_pixel = src_scan + j * Bpp;
if (m_DestFormat == FXDIB_Format::kArgb) {
pixel_weight = pixel_weight * src_pixel[3] / 255;
} else {
pixel_weight = pixel_weight * src_scan_mask[j] / 255;
}
dest_b += pixel_weight * (*src_pixel++);
dest_g += pixel_weight * (*src_pixel++);
dest_r += pixel_weight * (*src_pixel);
dest_a += pixel_weight;
}
dest_span[dest_span_index++] = PixelFromFixed(dest_b);
dest_span[dest_span_index++] = PixelFromFixed(dest_g);
dest_span[dest_span_index++] = PixelFromFixed(dest_r);
if (m_DestFormat == FXDIB_Format::kArgb)
dest_span[dest_span_index] = PixelFromFixed(255 * dest_a);
if (dest_scan_mask)
*dest_scan_mask++ = PixelFromFixed(255 * dest_a);
dest_span_index += Bpp - 3;
}
break;
}
}
rows_to_go--;
}
return false;
}
void CStretchEngine::StretchVert() {
if (m_DestHeight == 0)
return;
WeightTable table;
if (!table.CalculateWeights(m_DestHeight, m_DestClip.top, m_DestClip.bottom,
m_SrcHeight, m_SrcClip.top, m_SrcClip.bottom,
m_ResampleOptions)) {
return;
}
const int DestBpp = m_DestBpp / 8;
for (int row = m_DestClip.top; row < m_DestClip.bottom; ++row) {
unsigned char* dest_scan = m_DestScanline.data();
unsigned char* dest_scan_mask = m_DestMaskScanline.data();
PixelWeight* pWeights = table.GetPixelWeight(row);
switch (m_TransMethod) {
case TransformMethod::k1BppTo8Bpp:
case TransformMethod::k1BppToManyBpp:
case TransformMethod::k8BppTo8Bpp: {
for (int col = m_DestClip.left; col < m_DestClip.right; ++col) {
pdfium::span<const uint8_t> src_span =
m_InterBuf.span().subspan((col - m_DestClip.left) * DestBpp);
uint32_t dest_a = 0;
for (int j = pWeights->m_SrcStart; j <= pWeights->m_SrcEnd; ++j) {
uint32_t pixel_weight = pWeights->GetWeightForPosition(j);
dest_a +=
pixel_weight * src_span[(j - m_SrcClip.top) * m_InterPitch];
}
*dest_scan = PixelFromFixed(dest_a);
dest_scan += DestBpp;
}
break;
}
case TransformMethod::k8BppTo8BppWithAlpha: {
for (int col = m_DestClip.left; col < m_DestClip.right; ++col) {
pdfium::span<const uint8_t> src_span =
m_InterBuf.span().subspan((col - m_DestClip.left) * DestBpp);
unsigned char* src_scan_mask =
m_ExtraAlphaBuf.data() + (col - m_DestClip.left);
uint32_t dest_a = 0;
uint32_t dest_k = 0;
for (int j = pWeights->m_SrcStart; j <= pWeights->m_SrcEnd; ++j) {
uint32_t pixel_weight = pWeights->GetWeightForPosition(j);
dest_k +=
pixel_weight * src_span[(j - m_SrcClip.top) * m_InterPitch];
dest_a += pixel_weight *
src_scan_mask[(j - m_SrcClip.top) * m_ExtraMaskPitch];
}
*dest_scan = PixelFromFixed(dest_k);
dest_scan += DestBpp;
*dest_scan_mask++ = PixelFromFixed(dest_a);
}
break;
}
case TransformMethod::k8BppToManyBpp:
case TransformMethod::kManyBpptoManyBpp: {
for (int col = m_DestClip.left; col < m_DestClip.right; ++col) {
pdfium::span<const uint8_t> src_span =
m_InterBuf.span().subspan((col - m_DestClip.left) * DestBpp);
uint32_t dest_r = 0;
uint32_t dest_g = 0;
uint32_t dest_b = 0;
for (int j = pWeights->m_SrcStart; j <= pWeights->m_SrcEnd; ++j) {
uint32_t pixel_weight = pWeights->GetWeightForPosition(j);
pdfium::span<const uint8_t> src_pixel =
src_span.subspan((j - m_SrcClip.top) * m_InterPitch, 3);
dest_b += pixel_weight * src_pixel[0];
dest_g += pixel_weight * src_pixel[1];
dest_r += pixel_weight * src_pixel[2];
}
dest_scan[0] = PixelFromFixed(dest_b);
dest_scan[1] = PixelFromFixed(dest_g);
dest_scan[2] = PixelFromFixed(dest_r);
dest_scan += DestBpp;
}
break;
}
case TransformMethod::k8BppToManyBppWithAlpha:
case TransformMethod::kManyBpptoManyBppWithAlpha: {
for (int col = m_DestClip.left; col < m_DestClip.right; ++col) {
pdfium::span<const uint8_t> src_span =
m_InterBuf.span().subspan((col - m_DestClip.left) * DestBpp);
unsigned char* src_scan_mask = nullptr;
if (m_DestFormat != FXDIB_Format::kArgb)
src_scan_mask = m_ExtraAlphaBuf.data() + (col - m_DestClip.left);
uint32_t dest_a = 0;
uint32_t dest_r = 0;
uint32_t dest_g = 0;
uint32_t dest_b = 0;
const size_t pixel_bytes =
m_DestFormat == FXDIB_Format::kArgb ? 4 : 3;
for (int j = pWeights->m_SrcStart; j <= pWeights->m_SrcEnd; ++j) {
uint32_t pixel_weight = pWeights->GetWeightForPosition(j);
pdfium::span<const uint8_t> src_pixel = src_span.subspan(
(j - m_SrcClip.top) * m_InterPitch, pixel_bytes);
int mask_v = 255;
if (src_scan_mask)
mask_v = src_scan_mask[(j - m_SrcClip.top) * m_ExtraMaskPitch];
dest_b += pixel_weight * src_pixel[0];
dest_g += pixel_weight * src_pixel[1];
dest_r += pixel_weight * src_pixel[2];
if (m_DestFormat == FXDIB_Format::kArgb)
dest_a += pixel_weight * src_pixel[3];
else
dest_a += pixel_weight * mask_v;
}
if (dest_a) {
int r = static_cast<uint32_t>(dest_r) * 255 / dest_a;
int g = static_cast<uint32_t>(dest_g) * 255 / dest_a;
int b = static_cast<uint32_t>(dest_b) * 255 / dest_a;
dest_scan[0] = pdfium::clamp(b, 0, 255);
dest_scan[1] = pdfium::clamp(g, 0, 255);
dest_scan[2] = pdfium::clamp(r, 0, 255);
}
if (m_DestFormat == FXDIB_Format::kArgb)
dest_scan[3] = PixelFromFixed(dest_a);
else
*dest_scan_mask = PixelFromFixed(dest_a);
dest_scan += DestBpp;
if (dest_scan_mask)
dest_scan_mask++;
}
break;
}
}
m_pDestBitmap->ComposeScanline(row - m_DestClip.top, m_DestScanline,
m_DestMaskScanline);
}
}