blob: ca2f550e4cc292fa23df478943d432cd5925760a [file] [log] [blame]
// Copyright 2019 The PDFium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#if defined(UNSAFE_BUFFERS_BUILD)
// TODO(crbug.com/pdfium/2154): resolve buffer safety issues.
#pragma allow_unsafe_buffers
#endif
#include "core/fxcodec/jpx/cjpx_decoder.h"
#include <string.h>
#include <algorithm>
#include <limits>
#include <optional>
#include <utility>
#include <vector>
#include "core/fxcodec/jpx/jpx_decode_utils.h"
#include "core/fxcrt/fx_safe_types.h"
#include "core/fxcrt/ptr_util.h"
#include "core/fxcrt/span_util.h"
#include "core/fxge/calculate_pitch.h"
#if !defined(USE_SYSTEM_LIBOPENJPEG2)
#include "third_party/libopenjpeg/opj_malloc.h"
#endif
namespace fxcodec {
namespace {
// Used with std::unique_ptr to call opj_image_data_free on raw memory.
struct OpjImageDataDeleter {
inline void operator()(void* ptr) const { opj_image_data_free(ptr); }
};
using ScopedOpjImageData = std::unique_ptr<int, OpjImageDataDeleter>;
struct OpjImageRgbData {
ScopedOpjImageData r;
ScopedOpjImageData g;
ScopedOpjImageData b;
};
void fx_ignore_callback(const char* msg, void* client_data) {}
opj_stream_t* fx_opj_stream_create_memory_stream(DecodeData* data) {
if (!data || !data->src_data || data->src_size <= 0)
return nullptr;
opj_stream_t* stream = opj_stream_create(OPJ_J2K_STREAM_CHUNK_SIZE,
/*p_is_input=*/OPJ_TRUE);
if (!stream)
return nullptr;
opj_stream_set_user_data(stream, data, nullptr);
opj_stream_set_user_data_length(stream, data->src_size);
opj_stream_set_read_function(stream, opj_read_from_memory);
opj_stream_set_skip_function(stream, opj_skip_from_memory);
opj_stream_set_seek_function(stream, opj_seek_from_memory);
return stream;
}
std::optional<OpjImageRgbData> alloc_rgb(size_t size) {
OpjImageRgbData data;
data.r.reset(static_cast<int*>(opj_image_data_alloc(size)));
if (!data.r)
return std::nullopt;
data.g.reset(static_cast<int*>(opj_image_data_alloc(size)));
if (!data.g)
return std::nullopt;
data.b.reset(static_cast<int*>(opj_image_data_alloc(size)));
if (!data.b)
return std::nullopt;
return data;
}
void sycc_to_rgb(int offset,
int upb,
int y,
int cb,
int cr,
int* out_r,
int* out_g,
int* out_b) {
cb -= offset;
cr -= offset;
*out_r = std::clamp(y + static_cast<int>(1.402 * cr), 0, upb);
*out_g = std::clamp(y - static_cast<int>(0.344 * cb + 0.714 * cr), 0, upb);
*out_b = std::clamp(y + static_cast<int>(1.772 * cb), 0, upb);
}
void sycc444_to_rgb(opj_image_t* img) {
int prec = img->comps[0].prec;
// If we shift 31 we're going to go negative, then things go bad.
if (prec > 30)
return;
int offset = 1 << (prec - 1);
int upb = (1 << prec) - 1;
OPJ_UINT32 maxw =
std::min({img->comps[0].w, img->comps[1].w, img->comps[2].w});
OPJ_UINT32 maxh =
std::min({img->comps[0].h, img->comps[1].h, img->comps[2].h});
FX_SAFE_SIZE_T max_size = maxw;
max_size *= maxh;
max_size *= sizeof(int);
if (!max_size.IsValid())
return;
const int* y = img->comps[0].data;
const int* cb = img->comps[1].data;
const int* cr = img->comps[2].data;
if (!y || !cb || !cr)
return;
std::optional<OpjImageRgbData> data = alloc_rgb(max_size.ValueOrDie());
if (!data.has_value())
return;
int* r = data.value().r.get();
int* g = data.value().g.get();
int* b = data.value().b.get();
max_size /= sizeof(int);
for (size_t i = 0; i < max_size.ValueOrDie(); ++i)
sycc_to_rgb(offset, upb, *y++, *cb++, *cr++, r++, g++, b++);
opj_image_data_free(img->comps[0].data);
opj_image_data_free(img->comps[1].data);
opj_image_data_free(img->comps[2].data);
img->comps[0].data = data.value().r.release();
img->comps[1].data = data.value().g.release();
img->comps[2].data = data.value().b.release();
}
bool sycc420_422_size_is_valid(opj_image_t* img) {
return img && img->comps[0].w != std::numeric_limits<OPJ_UINT32>::max() &&
(img->comps[0].w + 1) / 2 == img->comps[1].w &&
img->comps[1].w == img->comps[2].w &&
img->comps[1].h == img->comps[2].h;
}
bool sycc420_size_is_valid(opj_image_t* img) {
return sycc420_422_size_is_valid(img) &&
img->comps[0].h != std::numeric_limits<OPJ_UINT32>::max() &&
(img->comps[0].h + 1) / 2 == img->comps[1].h;
}
bool sycc420_must_extend_cbcr(OPJ_UINT32 y, OPJ_UINT32 cbcr) {
return (y & 1) && (cbcr == y / 2);
}
void sycc420_to_rgb(opj_image_t* img) {
if (!sycc420_size_is_valid(img))
return;
OPJ_UINT32 prec = img->comps[0].prec;
if (!prec)
return;
OPJ_UINT32 offset = 1 << (prec - 1);
OPJ_UINT32 upb = (1 << prec) - 1;
OPJ_UINT32 yw = img->comps[0].w;
OPJ_UINT32 yh = img->comps[0].h;
OPJ_UINT32 cbw = img->comps[1].w;
OPJ_UINT32 cbh = img->comps[1].h;
OPJ_UINT32 crw = img->comps[2].w;
bool extw = sycc420_must_extend_cbcr(yw, cbw);
bool exth = sycc420_must_extend_cbcr(yh, cbh);
FX_SAFE_UINT32 safe_size = yw;
safe_size *= yh;
safe_size *= sizeof(int);
if (!safe_size.IsValid())
return;
const int* y = img->comps[0].data;
const int* cb = img->comps[1].data;
const int* cr = img->comps[2].data;
if (!y || !cb || !cr)
return;
std::optional<OpjImageRgbData> data = alloc_rgb(safe_size.ValueOrDie());
if (!data.has_value())
return;
int* r = data.value().r.get();
int* g = data.value().g.get();
int* b = data.value().b.get();
const int* ny = nullptr;
int* nr = nullptr;
int* ng = nullptr;
int* nb = nullptr;
OPJ_UINT32 i = 0;
OPJ_UINT32 j = 0;
for (i = 0; i < (yh & ~(OPJ_UINT32)1); i += 2) {
ny = y + yw;
nr = r + yw;
ng = g + yw;
nb = b + yw;
for (j = 0; j < (yw & ~(OPJ_UINT32)1); j += 2) {
sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b);
++y;
++r;
++g;
++b;
sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b);
++y;
++r;
++g;
++b;
sycc_to_rgb(offset, upb, *ny, *cb, *cr, nr, ng, nb);
++ny;
++nr;
++ng;
++nb;
sycc_to_rgb(offset, upb, *ny, *cb, *cr, nr, ng, nb);
++ny;
++nr;
++ng;
++nb;
++cb;
++cr;
}
if (j < yw) {
if (extw) {
--cb;
--cr;
}
sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b);
++y;
++r;
++g;
++b;
sycc_to_rgb(offset, upb, *ny, *cb, *cr, nr, ng, nb);
++ny;
++nr;
++ng;
++nb;
++cb;
++cr;
}
y += yw;
r += yw;
g += yw;
b += yw;
}
if (i < yh) {
if (exth) {
cb -= cbw;
cr -= crw;
}
for (j = 0; j < (yw & ~(OPJ_UINT32)1); j += 2) {
sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b);
++y;
++r;
++g;
++b;
sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b);
++y;
++r;
++g;
++b;
++cb;
++cr;
}
if (j < yw) {
if (extw) {
--cb;
--cr;
}
sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b);
}
}
opj_image_data_free(img->comps[0].data);
opj_image_data_free(img->comps[1].data);
opj_image_data_free(img->comps[2].data);
img->comps[0].data = data.value().r.release();
img->comps[1].data = data.value().g.release();
img->comps[2].data = data.value().b.release();
img->comps[1].w = yw;
img->comps[1].h = yh;
img->comps[2].w = yw;
img->comps[2].h = yh;
img->comps[1].dx = img->comps[0].dx;
img->comps[2].dx = img->comps[0].dx;
img->comps[1].dy = img->comps[0].dy;
img->comps[2].dy = img->comps[0].dy;
}
bool sycc422_size_is_valid(opj_image_t* img) {
return sycc420_422_size_is_valid(img) && img->comps[0].h == img->comps[1].h;
}
void sycc422_to_rgb(opj_image_t* img) {
if (!sycc422_size_is_valid(img))
return;
int prec = img->comps[0].prec;
if (prec <= 0 || prec >= 32)
return;
int offset = 1 << (prec - 1);
int upb = (1 << prec) - 1;
OPJ_UINT32 maxw = img->comps[0].w;
OPJ_UINT32 maxh = img->comps[0].h;
FX_SAFE_SIZE_T max_size = maxw;
max_size *= maxh;
max_size *= sizeof(int);
if (!max_size.IsValid())
return;
const int* y = img->comps[0].data;
const int* cb = img->comps[1].data;
const int* cr = img->comps[2].data;
if (!y || !cb || !cr)
return;
std::optional<OpjImageRgbData> data = alloc_rgb(max_size.ValueOrDie());
if (!data.has_value())
return;
int* r = data.value().r.get();
int* g = data.value().g.get();
int* b = data.value().b.get();
for (uint32_t i = 0; i < maxh; ++i) {
OPJ_UINT32 j;
for (j = 0; j < (maxw & ~static_cast<OPJ_UINT32>(1)); j += 2) {
sycc_to_rgb(offset, upb, *y++, *cb, *cr, r++, g++, b++);
sycc_to_rgb(offset, upb, *y++, *cb++, *cr++, r++, g++, b++);
}
if (j < maxw) {
sycc_to_rgb(offset, upb, *y++, *cb++, *cr++, r++, g++, b++);
}
}
opj_image_data_free(img->comps[0].data);
opj_image_data_free(img->comps[1].data);
opj_image_data_free(img->comps[2].data);
img->comps[0].data = data.value().r.release();
img->comps[1].data = data.value().g.release();
img->comps[2].data = data.value().b.release();
img->comps[1].w = maxw;
img->comps[1].h = maxh;
img->comps[2].w = maxw;
img->comps[2].h = maxh;
img->comps[1].dx = img->comps[0].dx;
img->comps[2].dx = img->comps[0].dx;
img->comps[1].dy = img->comps[0].dy;
img->comps[2].dy = img->comps[0].dy;
}
bool is_sycc420(const opj_image_t* img) {
return img->comps[0].dx == 1 && img->comps[0].dy == 1 &&
img->comps[1].dx == 2 && img->comps[1].dy == 2 &&
img->comps[2].dx == 2 && img->comps[2].dy == 2;
}
bool is_sycc422(const opj_image_t* img) {
return img->comps[0].dx == 1 && img->comps[0].dy == 1 &&
img->comps[1].dx == 2 && img->comps[1].dy == 1 &&
img->comps[2].dx == 2 && img->comps[2].dy == 1;
}
bool is_sycc444(const opj_image_t* img) {
return img->comps[0].dx == 1 && img->comps[0].dy == 1 &&
img->comps[1].dx == 1 && img->comps[1].dy == 1 &&
img->comps[2].dx == 1 && img->comps[2].dy == 1;
}
void color_sycc_to_rgb(opj_image_t* img) {
if (img->numcomps < 3) {
img->color_space = OPJ_CLRSPC_GRAY;
return;
}
if (is_sycc420(img))
sycc420_to_rgb(img);
else if (is_sycc422(img))
sycc422_to_rgb(img);
else if (is_sycc444(img))
sycc444_to_rgb(img);
else
return;
img->color_space = OPJ_CLRSPC_SRGB;
}
} // namespace
// static
std::unique_ptr<CJPX_Decoder> CJPX_Decoder::Create(
pdfium::span<const uint8_t> src_span,
CJPX_Decoder::ColorSpaceOption option,
uint8_t resolution_levels_to_skip) {
// Private ctor.
auto decoder = pdfium::WrapUnique(new CJPX_Decoder(option));
if (!decoder->Init(src_span, resolution_levels_to_skip))
return nullptr;
return decoder;
}
// static
void CJPX_Decoder::Sycc420ToRgbForTesting(opj_image_t* img) {
sycc420_to_rgb(img);
}
CJPX_Decoder::CJPX_Decoder(ColorSpaceOption option)
: m_ColorSpaceOption(option) {}
CJPX_Decoder::~CJPX_Decoder() {
if (m_Codec)
opj_destroy_codec(m_Codec.ExtractAsDangling());
if (m_Stream)
opj_stream_destroy(m_Stream.ExtractAsDangling());
if (m_Image)
opj_image_destroy(m_Image.ExtractAsDangling());
}
bool CJPX_Decoder::Init(pdfium::span<const uint8_t> src_data,
uint8_t resolution_levels_to_skip) {
static constexpr uint8_t kJP2Header[] = {0x00, 0x00, 0x00, 0x0c, 0x6a, 0x50,
0x20, 0x20, 0x0d, 0x0a, 0x87, 0x0a};
if (src_data.size() < sizeof(kJP2Header) ||
resolution_levels_to_skip > kMaxResolutionsToSkip) {
return false;
}
m_Image = nullptr;
m_SrcData = src_data;
m_DecodeData = std::make_unique<DecodeData>(src_data.data(), src_data.size());
m_Stream = fx_opj_stream_create_memory_stream(m_DecodeData.get());
if (!m_Stream)
return false;
opj_set_default_decoder_parameters(&m_Parameters);
m_Parameters.decod_format = 0;
m_Parameters.cod_format = 3;
m_Parameters.cp_reduce = resolution_levels_to_skip;
if (memcmp(m_SrcData.data(), kJP2Header, sizeof(kJP2Header)) == 0) {
m_Codec = opj_create_decompress(OPJ_CODEC_JP2);
m_Parameters.decod_format = 1;
} else {
m_Codec = opj_create_decompress(OPJ_CODEC_J2K);
}
if (!m_Codec)
return false;
if (m_ColorSpaceOption == kIndexedColorSpace)
m_Parameters.flags |= OPJ_DPARAMETERS_IGNORE_PCLR_CMAP_CDEF_FLAG;
opj_set_info_handler(m_Codec, fx_ignore_callback, nullptr);
opj_set_warning_handler(m_Codec, fx_ignore_callback, nullptr);
opj_set_error_handler(m_Codec, fx_ignore_callback, nullptr);
if (!opj_setup_decoder(m_Codec, &m_Parameters))
return false;
m_Image = nullptr;
opj_image_t* pTempImage = nullptr;
if (!opj_read_header(m_Stream, m_Codec, &pTempImage))
return false;
m_Image = pTempImage;
return true;
}
bool CJPX_Decoder::StartDecode() {
if (!m_Parameters.nb_tile_to_decode) {
if (!opj_set_decode_area(m_Codec, m_Image, m_Parameters.DA_x0,
m_Parameters.DA_y0, m_Parameters.DA_x1,
m_Parameters.DA_y1)) {
opj_image_destroy(m_Image.ExtractAsDangling());
return false;
}
if (!(opj_decode(m_Codec, m_Stream, m_Image) &&
opj_end_decompress(m_Codec, m_Stream))) {
opj_image_destroy(m_Image.ExtractAsDangling());
return false;
}
} else if (!opj_get_decoded_tile(m_Codec, m_Stream, m_Image,
m_Parameters.tile_index)) {
return false;
}
opj_stream_destroy(m_Stream.ExtractAsDangling());
if (m_Image->color_space != OPJ_CLRSPC_SYCC && m_Image->numcomps == 3 &&
m_Image->comps[0].dx == m_Image->comps[0].dy &&
m_Image->comps[1].dx != 1) {
m_Image->color_space = OPJ_CLRSPC_SYCC;
} else if (m_Image->numcomps <= 2) {
m_Image->color_space = OPJ_CLRSPC_GRAY;
}
if (m_Image->color_space == OPJ_CLRSPC_SYCC)
color_sycc_to_rgb(m_Image);
if (m_Image->icc_profile_buf) {
// TODO(palmer): Using |opj_free| here resolves the crash described in
// https://crbug.com/737033, but ultimately we need to harmonize the
// memory allocation strategy across OpenJPEG and its PDFium callers.
#if !defined(USE_SYSTEM_LIBOPENJPEG2)
opj_free(m_Image->icc_profile_buf);
#else
free(m_Image->icc_profile_buf);
#endif
m_Image->icc_profile_buf = nullptr;
m_Image->icc_profile_len = 0;
}
return true;
}
CJPX_Decoder::JpxImageInfo CJPX_Decoder::GetInfo() const {
return {m_Image->comps[0].w, m_Image->comps[0].h, m_Image->numcomps,
m_Image->color_space};
}
bool CJPX_Decoder::Decode(pdfium::span<uint8_t> dest_buf,
uint32_t pitch,
bool swap_rgb,
uint32_t component_count) {
CHECK_LE(component_count, m_Image->numcomps);
uint32_t channel_count = component_count;
if (channel_count == 3 && m_Image->numcomps == 4) {
// When decoding for an ARGB image, include the alpha channel in the channel
// count.
channel_count = 4;
}
std::optional<uint32_t> calculated_pitch =
fxge::CalculatePitch32(8 * channel_count, m_Image->comps[0].w);
if (!calculated_pitch.has_value() || pitch < calculated_pitch.value()) {
return false;
}
if (swap_rgb && channel_count < 3) {
return false;
}
// Initialize `channel_bufs` and `adjust_comps` to store information from all
// the channels of the JPX image. They will contain more information besides
// the color component data if `m_Image->numcomps` > `component_count`.
// Currently only the color component data is used for rendering.
// TODO(crbug.com/pdfium/1747): Make full use of the component information.
fxcrt::spanset(dest_buf.first(m_Image->comps[0].h * pitch), 0xff);
std::vector<uint8_t*> channel_bufs(m_Image->numcomps);
std::vector<int> adjust_comps(m_Image->numcomps);
for (uint32_t i = 0; i < m_Image->numcomps; i++) {
channel_bufs[i] = dest_buf.subspan(i).data();
adjust_comps[i] = m_Image->comps[i].prec - 8;
if (i > 0) {
if (m_Image->comps[i].dx != m_Image->comps[i - 1].dx ||
m_Image->comps[i].dy != m_Image->comps[i - 1].dy ||
m_Image->comps[i].prec != m_Image->comps[i - 1].prec) {
return false;
}
}
}
if (swap_rgb)
std::swap(channel_bufs[0], channel_bufs[2]);
uint32_t width = m_Image->comps[0].w;
uint32_t height = m_Image->comps[0].h;
for (uint32_t channel = 0; channel < channel_count; ++channel) {
uint8_t* pChannel = channel_bufs[channel];
const int adjust = adjust_comps[channel];
const opj_image_comp_t& comps = m_Image->comps[channel];
if (!comps.data)
continue;
// Perfomance-sensitive code below. Combining these 3 for-loops below will
// cause a slowdown.
const uint32_t src_offset = comps.sgnd ? 1 << (comps.prec - 1) : 0;
if (adjust < 0) {
for (uint32_t row = 0; row < height; ++row) {
uint8_t* pScanline = pChannel + row * pitch;
for (uint32_t col = 0; col < width; ++col) {
uint8_t* pPixel = pScanline + col * channel_count;
int src = comps.data[row * width + col] + src_offset;
*pPixel = static_cast<uint8_t>(src << -adjust);
}
}
} else if (adjust == 0) {
for (uint32_t row = 0; row < height; ++row) {
uint8_t* pScanline = pChannel + row * pitch;
for (uint32_t col = 0; col < width; ++col) {
uint8_t* pPixel = pScanline + col * channel_count;
int src = comps.data[row * width + col] + src_offset;
*pPixel = static_cast<uint8_t>(src);
}
}
} else {
for (uint32_t row = 0; row < height; ++row) {
uint8_t* pScanline = pChannel + row * pitch;
for (uint32_t col = 0; col < width; ++col) {
uint8_t* pPixel = pScanline + col * channel_count;
int src = comps.data[row * width + col] + src_offset;
int pixel = (src >> adjust) + ((src >> (adjust - 1)) % 2);
pixel = std::clamp(pixel, 0, 255);
*pPixel = static_cast<uint8_t>(pixel);
}
}
}
}
return true;
}
} // namespace fxcodec