blob: ed22c40e9f39781c61bd21f01063b828b3cec8f5 [file] [log] [blame] [edit]
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.3
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_ARRAY_INCLUDED
#define AGG_ARRAY_INCLUDED
#include <string.h>
#include "agg_basics.h"
#include "core/fxcrt/fx_memory.h" // For FXSYS_* macros.
namespace pdfium
{
namespace agg
{
template <class T>
class pod_array {
public:
typedef T value_type;
~pod_array()
{
FX_Free(m_array);
}
pod_array() : m_size(0), m_capacity(0), m_array(0) {}
pod_array(unsigned cap, unsigned extra_tail = 0);
pod_array(const pod_array<T>&);
pod_array<T>& operator = (const pod_array<T>&);
void capacity(unsigned cap, unsigned extra_tail = 0);
unsigned capacity() const
{
return m_capacity;
}
void allocate(unsigned size, unsigned extra_tail = 0);
void resize(unsigned new_size);
void zero() { memset(m_array, 0, sizeof(T) * m_size); }
void add(const T& v)
{
m_array[m_size++] = v;
}
void inc_size(unsigned size)
{
m_size += size;
}
unsigned size() const
{
return m_size;
}
unsigned byte_size() const
{
return m_size * sizeof(T);
}
const T& operator [] (unsigned i) const
{
return m_array[i];
}
T& operator [] (unsigned i)
{
return m_array[i];
}
const T& at(unsigned i) const
{
return m_array[i];
}
T& at(unsigned i)
{
return m_array[i];
}
T value_at(unsigned i) const
{
return m_array[i];
}
const T* data() const
{
return m_array;
}
T* data()
{
return m_array;
}
void remove_all()
{
m_size = 0;
}
void cut_at(unsigned num)
{
if(num < m_size) {
m_size = num;
}
}
private:
unsigned m_size;
unsigned m_capacity;
T* m_array;
};
template<class T>
void pod_array<T>::capacity(unsigned cap, unsigned extra_tail)
{
m_size = 0;
unsigned full_cap = cap + extra_tail;
if(full_cap < cap) {
FX_Free(m_array);
m_array = 0;
m_capacity = 0;
} else if(full_cap > m_capacity) {
FX_Free(m_array);
m_array = FX_Alloc(T, full_cap);
m_capacity = full_cap;
}
}
template<class T>
void pod_array<T>::allocate(unsigned size, unsigned extra_tail)
{
capacity(size, extra_tail);
m_size = size;
}
template<class T>
void pod_array<T>::resize(unsigned new_size)
{
if(new_size > m_size) {
if(new_size > m_capacity) {
T* data = FX_AllocUninit(T, new_size);
memcpy(data, m_array, m_size * sizeof(T));
FX_Free(m_array);
m_array = data;
}
} else {
m_size = new_size;
}
}
template<class T> pod_array<T>::pod_array(unsigned cap, unsigned extra_tail) :
m_size(0), m_capacity(cap + extra_tail), m_array(FX_Alloc(T, m_capacity)) {}
template<class T> pod_array<T>::pod_array(const pod_array<T>& v) :
m_size(v.m_size),
m_capacity(v.m_capacity),
m_array(v.m_capacity ? FX_Alloc(T, v.m_capacity) : 0)
{
memcpy(m_array, v.m_array, sizeof(T) * v.m_size);
}
template<class T> pod_array<T>&
pod_array<T>::operator = (const pod_array<T>&v)
{
allocate(v.m_size);
if(v.m_size) {
memcpy(m_array, v.m_array, sizeof(T) * v.m_size);
}
return *this;
}
template<class T, unsigned S = 6> class pod_deque
{
public:
enum block_scale_e {
block_shift = S,
block_size = 1 << block_shift,
block_mask = block_size - 1
};
typedef T value_type;
~pod_deque();
pod_deque();
pod_deque(unsigned block_ptr_inc);
pod_deque(const pod_deque<T, S>& v);
pod_deque<T, S>& operator = (const pod_deque<T, S>& v);
void remove_all()
{
m_size = 0;
}
void free_all()
{
free_tail(0);
}
void free_tail(unsigned size);
void add(const T& val);
void modify_last(const T& val);
void remove_last();
int allocate_continuous_block(unsigned num_elements);
void add_array(const T* ptr, unsigned num_elem)
{
while(num_elem--) {
add(*ptr++);
}
}
template<class DataAccessor> void add_data(DataAccessor& data)
{
while(data.size()) {
add(*data);
++data;
}
}
void cut_at(unsigned size)
{
if(size < m_size) {
m_size = size;
}
}
unsigned size() const
{
return m_size;
}
const T& operator [] (unsigned i) const
{
return m_blocks[i >> block_shift][i & block_mask];
}
T& operator [] (unsigned i)
{
return m_blocks[i >> block_shift][i & block_mask];
}
const T& at(unsigned i) const
{
return m_blocks[i >> block_shift][i & block_mask];
}
T& at(unsigned i)
{
return m_blocks[i >> block_shift][i & block_mask];
}
T value_at(unsigned i) const
{
return m_blocks[i >> block_shift][i & block_mask];
}
const T& curr(unsigned idx) const
{
return (*this)[idx];
}
T& curr(unsigned idx)
{
return (*this)[idx];
}
const T& prev(unsigned idx) const
{
return (*this)[(idx + m_size - 1) % m_size];
}
T& prev(unsigned idx)
{
return (*this)[(idx + m_size - 1) % m_size];
}
const T& next(unsigned idx) const
{
return (*this)[(idx + 1) % m_size];
}
T& next(unsigned idx)
{
return (*this)[(idx + 1) % m_size];
}
const T& last() const
{
return (*this)[m_size - 1];
}
T& last()
{
return (*this)[m_size - 1];
}
unsigned byte_size() const;
const T* block(unsigned nb) const
{
return m_blocks[nb];
}
public:
void allocate_block(unsigned nb);
T* data_ptr();
unsigned m_size;
unsigned m_num_blocks;
unsigned m_max_blocks;
T** m_blocks;
unsigned m_block_ptr_inc;
};
template<class T, unsigned S> pod_deque<T, S>::~pod_deque()
{
if(m_num_blocks) {
T** blk = m_blocks + m_num_blocks - 1;
while(m_num_blocks--) {
FX_Free(*blk);
--blk;
}
FX_Free(m_blocks);
}
}
template<class T, unsigned S>
void pod_deque<T, S>::free_tail(unsigned size)
{
if(size < m_size) {
unsigned nb = (size + block_mask) >> block_shift;
while(m_num_blocks > nb) {
FX_Free(m_blocks[--m_num_blocks]);
}
m_size = size;
}
}
template<class T, unsigned S> pod_deque<T, S>::pod_deque() :
m_size(0),
m_num_blocks(0),
m_max_blocks(0),
m_blocks(0),
m_block_ptr_inc(block_size)
{
}
template<class T, unsigned S>
pod_deque<T, S>::pod_deque(unsigned block_ptr_inc) :
m_size(0),
m_num_blocks(0),
m_max_blocks(0),
m_blocks(0),
m_block_ptr_inc(block_ptr_inc)
{
}
template<class T, unsigned S>
pod_deque<T, S>::pod_deque(const pod_deque<T, S>& v) :
m_size(v.m_size),
m_num_blocks(v.m_num_blocks),
m_max_blocks(v.m_max_blocks),
m_blocks(v.m_max_blocks ? FX_Alloc(T*, v.m_max_blocks) : 0),
m_block_ptr_inc(v.m_block_ptr_inc)
{
unsigned i;
for(i = 0; i < v.m_num_blocks; ++i) {
m_blocks[i] = FX_AllocUninit(T, block_size);
memcpy(m_blocks[i], v.m_blocks[i], block_size * sizeof(T));
}
}
template<class T, unsigned S>
pod_deque<T, S>& pod_deque<T, S>::operator = (const pod_deque<T, S>& v)
{
unsigned i;
for(i = m_num_blocks; i < v.m_num_blocks; ++i) {
allocate_block(i);
}
for(i = 0; i < v.m_num_blocks; ++i) {
memcpy(m_blocks[i], v.m_blocks[i], block_size * sizeof(T));
}
m_size = v.m_size;
return *this;
}
template<class T, unsigned S>
void pod_deque<T, S>::allocate_block(unsigned nb)
{
if(nb >= m_max_blocks) {
T** new_blocks = FX_Alloc(T*, m_max_blocks + m_block_ptr_inc);
if(m_blocks) {
memcpy(new_blocks, m_blocks, m_num_blocks * sizeof(T*));
FX_Free(m_blocks);
}
m_blocks = new_blocks;
m_max_blocks += m_block_ptr_inc;
}
m_blocks[nb] = FX_Alloc(T, block_size);
m_num_blocks++;
}
template<class T, unsigned S>
inline T* pod_deque<T, S>::data_ptr()
{
unsigned nb = m_size >> block_shift;
if(nb >= m_num_blocks) {
allocate_block(nb);
}
return m_blocks[nb] + (m_size & block_mask);
}
template<class T, unsigned S>
inline void pod_deque<T, S>::add(const T& val)
{
*data_ptr() = val;
++m_size;
}
template<class T, unsigned S>
inline void pod_deque<T, S>::remove_last()
{
if(m_size) {
--m_size;
}
}
template<class T, unsigned S>
void pod_deque<T, S>::modify_last(const T& val)
{
remove_last();
add(val);
}
template<class T, unsigned S>
int pod_deque<T, S>::allocate_continuous_block(unsigned num_elements)
{
if(num_elements < block_size) {
data_ptr();
unsigned rest = block_size - (m_size & block_mask);
unsigned index;
if(num_elements <= rest) {
index = m_size;
m_size += num_elements;
return index;
}
m_size += rest;
data_ptr();
index = m_size;
m_size += num_elements;
return index;
}
return -1;
}
template<class T, unsigned S>
unsigned pod_deque<T, S>::byte_size() const
{
return m_size * sizeof(T);
}
class pod_allocator
{
public:
void remove_all()
{
if(m_num_blocks) {
int8u** blk = m_blocks + m_num_blocks - 1;
while(m_num_blocks--) {
FX_Free(*blk);
--blk;
}
FX_Free(m_blocks);
}
m_num_blocks = 0;
m_max_blocks = 0;
m_blocks = 0;
m_buf_ptr = 0;
m_rest = 0;
}
~pod_allocator()
{
remove_all();
}
pod_allocator(unsigned block_size, unsigned block_ptr_inc = 256 - 8) :
m_block_size(block_size),
m_block_ptr_inc(block_ptr_inc),
m_num_blocks(0),
m_max_blocks(0),
m_blocks(0),
m_buf_ptr(0),
m_rest(0)
{
}
int8u* allocate(unsigned size, unsigned alignment = 1)
{
if(size == 0) {
return 0;
}
if(size <= m_rest) {
int8u* ptr = m_buf_ptr;
if(alignment > 1) {
unsigned align = (alignment - unsigned((size_t)ptr) % alignment) % alignment;
size += align;
ptr += align;
if(size <= m_rest) {
m_rest -= size;
m_buf_ptr += size;
return ptr;
}
allocate_block(size);
return allocate(size - align, alignment);
}
m_rest -= size;
m_buf_ptr += size;
return ptr;
}
allocate_block(size + alignment - 1);
return allocate(size, alignment);
}
private:
void allocate_block(unsigned size)
{
if(size < m_block_size) {
size = m_block_size;
}
if(m_num_blocks >= m_max_blocks) {
int8u** new_blocks = FX_Alloc(int8u*, m_max_blocks + m_block_ptr_inc);
if(m_blocks) {
memcpy(new_blocks, m_blocks, m_num_blocks * sizeof(int8u*));
FX_Free(m_blocks);
}
m_blocks = new_blocks;
m_max_blocks += m_block_ptr_inc;
}
m_blocks[m_num_blocks] = m_buf_ptr = FX_Alloc(int8u, size);
m_num_blocks++;
m_rest = size;
}
unsigned m_block_size;
unsigned m_block_ptr_inc;
unsigned m_num_blocks;
unsigned m_max_blocks;
int8u** m_blocks;
int8u* m_buf_ptr;
unsigned m_rest;
};
enum quick_sort_threshold_e {
quick_sort_threshold = 9
};
template<class T> inline void swap_elements(T& a, T& b)
{
T temp = a;
a = b;
b = temp;
}
}
} // namespace pdfium
#endif