blob: b6f0e4836a7454d28bc3ffc89f6512fac6bcf37d [file] [log] [blame] [edit]
/*
* The copyright in this software is being made available under the 2-clauses
* BSD License, included below. This software may be subject to other third
* party and contributor rights, including patent rights, and no such rights
* are granted under this license.
*
* Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
* Copyright (c) 2002-2014, Professor Benoit Macq
* Copyright (c) 2001-2003, David Janssens
* Copyright (c) 2002-2003, Yannick Verschueren
* Copyright (c) 2003-2007, Francois-Olivier Devaux
* Copyright (c) 2003-2014, Antonin Descampe
* Copyright (c) 2005, Herve Drolon, FreeImage Team
* Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
* Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
* Copyright (c) 2017, IntoPIX SA <support@intopix.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#define OPJ_SKIP_POISON
#include "opj_includes.h"
#ifdef __SSE__
#include <xmmintrin.h>
#endif
#ifdef __SSE2__
#include <emmintrin.h>
#endif
#ifdef __SSSE3__
#include <tmmintrin.h>
#endif
#ifdef __AVX2__
#include <immintrin.h>
#endif
#if defined(__GNUC__)
#pragma GCC poison malloc calloc realloc free
#endif
/** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
/*@{*/
#ifdef __AVX2__
/** Number of int32 values in a AVX2 register */
#define VREG_INT_COUNT 8
#else
/** Number of int32 values in a SSE2 register */
#define VREG_INT_COUNT 4
#endif
/** Number of columns that we can process in parallel in the vertical pass */
#define PARALLEL_COLS_53 (2*VREG_INT_COUNT)
/** @name Local data structures */
/*@{*/
typedef struct dwt_local {
OPJ_INT32* mem;
OPJ_SIZE_T mem_count;
OPJ_INT32 dn; /* number of elements in high pass band */
OPJ_INT32 sn; /* number of elements in low pass band */
OPJ_INT32 cas; /* 0 = start on even coord, 1 = start on odd coord */
} opj_dwt_t;
#define NB_ELTS_V8 8
typedef union {
OPJ_FLOAT32 f[NB_ELTS_V8];
} opj_v8_t;
typedef struct v8dwt_local {
opj_v8_t* wavelet ;
OPJ_INT32 dn ; /* number of elements in high pass band */
OPJ_INT32 sn ; /* number of elements in low pass band */
OPJ_INT32 cas ; /* 0 = start on even coord, 1 = start on odd coord */
OPJ_UINT32 win_l_x0; /* start coord in low pass band */
OPJ_UINT32 win_l_x1; /* end coord in low pass band */
OPJ_UINT32 win_h_x0; /* start coord in high pass band */
OPJ_UINT32 win_h_x1; /* end coord in high pass band */
} opj_v8dwt_t ;
/* From table F.4 from the standard */
static const OPJ_FLOAT32 opj_dwt_alpha = -1.586134342f;
static const OPJ_FLOAT32 opj_dwt_beta = -0.052980118f;
static const OPJ_FLOAT32 opj_dwt_gamma = 0.882911075f;
static const OPJ_FLOAT32 opj_dwt_delta = 0.443506852f;
static const OPJ_FLOAT32 opj_K = 1.230174105f;
static const OPJ_FLOAT32 opj_invK = (OPJ_FLOAT32)(1.0 / 1.230174105);
/*@}*/
/** @name Local static functions */
/*@{*/
/**
Forward lazy transform (horizontal)
*/
static void opj_dwt_deinterleave_h(const OPJ_INT32 * OPJ_RESTRICT a,
OPJ_INT32 * OPJ_RESTRICT b,
OPJ_INT32 dn,
OPJ_INT32 sn, OPJ_INT32 cas);
/**
Forward 9-7 wavelet transform in 1-D
*/
static void opj_dwt_encode_1_real(void *a, OPJ_INT32 dn, OPJ_INT32 sn,
OPJ_INT32 cas);
/**
Explicit calculation of the Quantization Stepsizes
*/
static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps,
opj_stepsize_t *bandno_stepsize);
/**
Inverse wavelet transform in 2-D.
*/
static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i);
static OPJ_BOOL opj_dwt_decode_partial_tile(
opj_tcd_tilecomp_t* tilec,
OPJ_UINT32 numres);
/* Forward transform, for the vertical pass, processing cols columns */
/* where cols <= NB_ELTS_V8 */
/* Where void* is a OPJ_INT32* for 5x3 and OPJ_FLOAT32* for 9x7 */
typedef void (*opj_encode_and_deinterleave_v_fnptr_type)(
void *array,
void *tmp,
OPJ_UINT32 height,
OPJ_BOOL even,
OPJ_UINT32 stride_width,
OPJ_UINT32 cols);
/* Where void* is a OPJ_INT32* for 5x3 and OPJ_FLOAT32* for 9x7 */
typedef void (*opj_encode_and_deinterleave_h_one_row_fnptr_type)(
void *row,
void *tmp,
OPJ_UINT32 width,
OPJ_BOOL even);
static OPJ_BOOL opj_dwt_encode_procedure(opj_thread_pool_t* tp,
opj_tcd_tilecomp_t * tilec,
opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v,
opj_encode_and_deinterleave_h_one_row_fnptr_type
p_encode_and_deinterleave_h_one_row);
static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r,
OPJ_UINT32 i);
/* <summary> */
/* Inverse 9-7 wavelet transform in 1-D. */
/* </summary> */
/*@}*/
/*@}*/
#define IDX_S(i) (i)*2
#define IDX_D(i) 1 + (i)* 2
#define UNDERFLOW_SN(i) ((i) >= sn&&sn>0)
#define UNDERFLOW_DN(i) ((i) >= dn&&dn>0)
#define OVERFLOW_S(i) (IDX_S(i) >= a_count)
#define OVERFLOW_D(i) (IDX_D(i) >= a_count)
#define OPJ_S(i) a[IDX_S(i)]
#define OPJ_D(i) a[IDX_D(i)]
#define OPJ_S_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_SN(i) ? OPJ_S(sn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
#define OPJ_D_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_DN(i) ? OPJ_D(dn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
/* new */
#define OPJ_SS_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_DN(i) ? OPJ_S(dn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
#define OPJ_DD_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_SN(i) ? OPJ_D(sn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
/* <summary> */
/* This table contains the norms of the 5-3 wavelets for different bands. */
/* </summary> */
/* FIXME! the array should really be extended up to 33 resolution levels */
/* See https://github.com/uclouvain/openjpeg/issues/493 */
static const OPJ_FLOAT64 opj_dwt_norms[4][10] = {
{1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
{.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
};
/* <summary> */
/* This table contains the norms of the 9-7 wavelets for different bands. */
/* </summary> */
/* FIXME! the array should really be extended up to 33 resolution levels */
/* See https://github.com/uclouvain/openjpeg/issues/493 */
static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = {
{1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
{2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
};
/*
==========================================================
local functions
==========================================================
*/
/* <summary> */
/* Forward lazy transform (horizontal). */
/* </summary> */
static void opj_dwt_deinterleave_h(const OPJ_INT32 * OPJ_RESTRICT a,
OPJ_INT32 * OPJ_RESTRICT b,
OPJ_INT32 dn,
OPJ_INT32 sn, OPJ_INT32 cas)
{
OPJ_INT32 i;
OPJ_INT32 * OPJ_RESTRICT l_dest = b;
const OPJ_INT32 * OPJ_RESTRICT l_src = a + cas;
for (i = 0; i < sn; ++i) {
*l_dest++ = *l_src;
l_src += 2;
}
l_dest = b + sn;
l_src = a + 1 - cas;
for (i = 0; i < dn; ++i) {
*l_dest++ = *l_src;
l_src += 2;
}
}
#ifdef STANDARD_SLOW_VERSION
/* <summary> */
/* Inverse lazy transform (horizontal). */
/* </summary> */
static void opj_dwt_interleave_h(const opj_dwt_t* h, OPJ_INT32 *a)
{
const OPJ_INT32 *ai = a;
OPJ_INT32 *bi = h->mem + h->cas;
OPJ_INT32 i = h->sn;
while (i--) {
*bi = *(ai++);
bi += 2;
}
ai = a + h->sn;
bi = h->mem + 1 - h->cas;
i = h->dn ;
while (i--) {
*bi = *(ai++);
bi += 2;
}
}
/* <summary> */
/* Inverse lazy transform (vertical). */
/* </summary> */
static void opj_dwt_interleave_v(const opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x)
{
const OPJ_INT32 *ai = a;
OPJ_INT32 *bi = v->mem + v->cas;
OPJ_INT32 i = v->sn;
while (i--) {
*bi = *ai;
bi += 2;
ai += x;
}
ai = a + (v->sn * (OPJ_SIZE_T)x);
bi = v->mem + 1 - v->cas;
i = v->dn ;
while (i--) {
*bi = *ai;
bi += 2;
ai += x;
}
}
#endif /* STANDARD_SLOW_VERSION */
#ifdef STANDARD_SLOW_VERSION
/* <summary> */
/* Inverse 5-3 wavelet transform in 1-D. */
/* </summary> */
static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn,
OPJ_INT32 sn, OPJ_INT32 cas)
{
OPJ_INT32 i;
if (!cas) {
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < sn; i++) {
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
}
for (i = 0; i < dn; i++) {
OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
}
}
} else {
if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */
OPJ_S(0) /= 2;
} else {
for (i = 0; i < sn; i++) {
OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
}
for (i = 0; i < dn; i++) {
OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
}
}
}
}
static void opj_dwt_decode_1(const opj_dwt_t *v)
{
opj_dwt_decode_1_(v->mem, v->mem_count, v->dn, v->sn, v->cas);
}
#endif /* STANDARD_SLOW_VERSION */
#if !defined(STANDARD_SLOW_VERSION)
static void opj_idwt53_h_cas0(OPJ_INT32* tmp,
const OPJ_INT32 sn,
const OPJ_INT32 len,
OPJ_INT32* tiledp)
{
OPJ_INT32 i, j;
const OPJ_INT32* in_even = &tiledp[0];
const OPJ_INT32* in_odd = &tiledp[sn];
#ifdef TWO_PASS_VERSION
/* For documentation purpose: performs lifting in two iterations, */
/* but without explicit interleaving */
assert(len > 1);
/* Even */
tmp[0] = in_even[0] - ((in_odd[0] + 1) >> 1);
for (i = 2, j = 0; i <= len - 2; i += 2, j++) {
tmp[i] = in_even[j + 1] - ((in_odd[j] + in_odd[j + 1] + 2) >> 2);
}
if (len & 1) { /* if len is odd */
tmp[len - 1] = in_even[(len - 1) / 2] - ((in_odd[(len - 2) / 2] + 1) >> 1);
}
/* Odd */
for (i = 1, j = 0; i < len - 1; i += 2, j++) {
tmp[i] = in_odd[j] + ((tmp[i - 1] + tmp[i + 1]) >> 1);
}
if (!(len & 1)) { /* if len is even */
tmp[len - 1] = in_odd[(len - 1) / 2] + tmp[len - 2];
}
#else
OPJ_INT32 d1c, d1n, s1n, s0c, s0n;
assert(len > 1);
/* Improved version of the TWO_PASS_VERSION: */
/* Performs lifting in one single iteration. Saves memory */
/* accesses and explicit interleaving. */
s1n = in_even[0];
d1n = in_odd[0];
s0n = s1n - ((d1n + 1) >> 1);
for (i = 0, j = 1; i < (len - 3); i += 2, j++) {
d1c = d1n;
s0c = s0n;
s1n = in_even[j];
d1n = in_odd[j];
s0n = s1n - ((d1c + d1n + 2) >> 2);
tmp[i ] = s0c;
tmp[i + 1] = opj_int_add_no_overflow(d1c, opj_int_add_no_overflow(s0c,
s0n) >> 1);
}
tmp[i] = s0n;
if (len & 1) {
tmp[len - 1] = in_even[(len - 1) / 2] - ((d1n + 1) >> 1);
tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1);
} else {
tmp[len - 1] = d1n + s0n;
}
#endif
memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32));
}
static void opj_idwt53_h_cas1(OPJ_INT32* tmp,
const OPJ_INT32 sn,
const OPJ_INT32 len,
OPJ_INT32* tiledp)
{
OPJ_INT32 i, j;
const OPJ_INT32* in_even = &tiledp[sn];
const OPJ_INT32* in_odd = &tiledp[0];
#ifdef TWO_PASS_VERSION
/* For documentation purpose: performs lifting in two iterations, */
/* but without explicit interleaving */
assert(len > 2);
/* Odd */
for (i = 1, j = 0; i < len - 1; i += 2, j++) {
tmp[i] = in_odd[j] - ((in_even[j] + in_even[j + 1] + 2) >> 2);
}
if (!(len & 1)) {
tmp[len - 1] = in_odd[len / 2 - 1] - ((in_even[len / 2 - 1] + 1) >> 1);
}
/* Even */
tmp[0] = in_even[0] + tmp[1];
for (i = 2, j = 1; i < len - 1; i += 2, j++) {
tmp[i] = in_even[j] + ((tmp[i + 1] + tmp[i - 1]) >> 1);
}
if (len & 1) {
tmp[len - 1] = in_even[len / 2] + tmp[len - 2];
}
#else
OPJ_INT32 s1, s2, dc, dn;
assert(len > 2);
/* Improved version of the TWO_PASS_VERSION: */
/* Performs lifting in one single iteration. Saves memory */
/* accesses and explicit interleaving. */
s1 = in_even[1];
dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2);
tmp[0] = in_even[0] + dc;
for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
s2 = in_even[j + 1];
dn = in_odd[j] - ((s1 + s2 + 2) >> 2);
tmp[i ] = dc;
tmp[i + 1] = opj_int_add_no_overflow(s1, opj_int_add_no_overflow(dn, dc) >> 1);
dc = dn;
s1 = s2;
}
tmp[i] = dc;
if (!(len & 1)) {
dn = in_odd[len / 2 - 1] - ((s1 + 1) >> 1);
tmp[len - 2] = s1 + ((dn + dc) >> 1);
tmp[len - 1] = dn;
} else {
tmp[len - 1] = s1 + dc;
}
#endif
memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32));
}
#endif /* !defined(STANDARD_SLOW_VERSION) */
/* <summary> */
/* Inverse 5-3 wavelet transform in 1-D for one row. */
/* </summary> */
/* Performs interleave, inverse wavelet transform and copy back to buffer */
static void opj_idwt53_h(const opj_dwt_t *dwt,
OPJ_INT32* tiledp)
{
#ifdef STANDARD_SLOW_VERSION
/* For documentation purpose */
opj_dwt_interleave_h(dwt, tiledp);
opj_dwt_decode_1(dwt);
memcpy(tiledp, dwt->mem, (OPJ_UINT32)(dwt->sn + dwt->dn) * sizeof(OPJ_INT32));
#else
const OPJ_INT32 sn = dwt->sn;
const OPJ_INT32 len = sn + dwt->dn;
if (dwt->cas == 0) { /* Left-most sample is on even coordinate */
if (len > 1) {
opj_idwt53_h_cas0(dwt->mem, sn, len, tiledp);
} else {
/* Unmodified value */
}
} else { /* Left-most sample is on odd coordinate */
if (len == 1) {
tiledp[0] /= 2;
} else if (len == 2) {
OPJ_INT32* out = dwt->mem;
const OPJ_INT32* in_even = &tiledp[sn];
const OPJ_INT32* in_odd = &tiledp[0];
out[1] = in_odd[0] - ((in_even[0] + 1) >> 1);
out[0] = in_even[0] + out[1];
memcpy(tiledp, dwt->mem, (OPJ_UINT32)len * sizeof(OPJ_INT32));
} else if (len > 2) {
opj_idwt53_h_cas1(dwt->mem, sn, len, tiledp);
}
}
#endif
}
#if (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION)
/* Conveniency macros to improve the readability of the formulas */
#if __AVX2__
#define VREG __m256i
#define LOAD_CST(x) _mm256_set1_epi32(x)
#define LOAD(x) _mm256_load_si256((const VREG*)(x))
#define LOADU(x) _mm256_loadu_si256((const VREG*)(x))
#define STORE(x,y) _mm256_store_si256((VREG*)(x),(y))
#define STOREU(x,y) _mm256_storeu_si256((VREG*)(x),(y))
#define ADD(x,y) _mm256_add_epi32((x),(y))
#define SUB(x,y) _mm256_sub_epi32((x),(y))
#define SAR(x,y) _mm256_srai_epi32((x),(y))
#else
#define VREG __m128i
#define LOAD_CST(x) _mm_set1_epi32(x)
#define LOAD(x) _mm_load_si128((const VREG*)(x))
#define LOADU(x) _mm_loadu_si128((const VREG*)(x))
#define STORE(x,y) _mm_store_si128((VREG*)(x),(y))
#define STOREU(x,y) _mm_storeu_si128((VREG*)(x),(y))
#define ADD(x,y) _mm_add_epi32((x),(y))
#define SUB(x,y) _mm_sub_epi32((x),(y))
#define SAR(x,y) _mm_srai_epi32((x),(y))
#endif
#define ADD3(x,y,z) ADD(ADD(x,y),z)
static
void opj_idwt53_v_final_memcpy(OPJ_INT32* tiledp_col,
const OPJ_INT32* tmp,
OPJ_INT32 len,
OPJ_SIZE_T stride)
{
OPJ_INT32 i;
for (i = 0; i < len; ++i) {
/* A memcpy(&tiledp_col[i * stride + 0],
&tmp[PARALLEL_COLS_53 * i + 0],
PARALLEL_COLS_53 * sizeof(OPJ_INT32))
would do but would be a tiny bit slower.
We can take here advantage of our knowledge of alignment */
STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + 0],
LOAD(&tmp[PARALLEL_COLS_53 * i + 0]));
STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + VREG_INT_COUNT],
LOAD(&tmp[PARALLEL_COLS_53 * i + VREG_INT_COUNT]));
}
}
/** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or
* 16 in AVX2, when top-most pixel is on even coordinate */
static void opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(
OPJ_INT32* tmp,
const OPJ_INT32 sn,
const OPJ_INT32 len,
OPJ_INT32* tiledp_col,
const OPJ_SIZE_T stride)
{
const OPJ_INT32* in_even = &tiledp_col[0];
const OPJ_INT32* in_odd = &tiledp_col[(OPJ_SIZE_T)sn * stride];
OPJ_INT32 i;
OPJ_SIZE_T j;
VREG d1c_0, d1n_0, s1n_0, s0c_0, s0n_0;
VREG d1c_1, d1n_1, s1n_1, s0c_1, s0n_1;
const VREG two = LOAD_CST(2);
assert(len > 1);
#if __AVX2__
assert(PARALLEL_COLS_53 == 16);
assert(VREG_INT_COUNT == 8);
#else
assert(PARALLEL_COLS_53 == 8);
assert(VREG_INT_COUNT == 4);
#endif
/* Note: loads of input even/odd values must be done in a unaligned */
/* fashion. But stores in tmp can be done with aligned store, since */
/* the temporary buffer is properly aligned */
assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0);
s1n_0 = LOADU(in_even + 0);
s1n_1 = LOADU(in_even + VREG_INT_COUNT);
d1n_0 = LOADU(in_odd);
d1n_1 = LOADU(in_odd + VREG_INT_COUNT);
/* s0n = s1n - ((d1n + 1) >> 1); <==> */
/* s0n = s1n - ((d1n + d1n + 2) >> 2); */
s0n_0 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2));
s0n_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2));
for (i = 0, j = 1; i < (len - 3); i += 2, j++) {
d1c_0 = d1n_0;
s0c_0 = s0n_0;
d1c_1 = d1n_1;
s0c_1 = s0n_1;
s1n_0 = LOADU(in_even + j * stride);
s1n_1 = LOADU(in_even + j * stride + VREG_INT_COUNT);
d1n_0 = LOADU(in_odd + j * stride);
d1n_1 = LOADU(in_odd + j * stride + VREG_INT_COUNT);
/*s0n = s1n - ((d1c + d1n + 2) >> 2);*/
s0n_0 = SUB(s1n_0, SAR(ADD3(d1c_0, d1n_0, two), 2));
s0n_1 = SUB(s1n_1, SAR(ADD3(d1c_1, d1n_1, two), 2));
STORE(tmp + PARALLEL_COLS_53 * (i + 0), s0c_0);
STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0c_1);
/* d1c + ((s0c + s0n) >> 1) */
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0,
ADD(d1c_0, SAR(ADD(s0c_0, s0n_0), 1)));
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT,
ADD(d1c_1, SAR(ADD(s0c_1, s0n_1), 1)));
}
STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 0, s0n_0);
STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0n_1);
if (len & 1) {
VREG tmp_len_minus_1;
s1n_0 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride);
/* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */
tmp_len_minus_1 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2));
STORE(tmp + PARALLEL_COLS_53 * (len - 1), tmp_len_minus_1);
/* d1n + ((s0n + tmp_len_minus_1) >> 1) */
STORE(tmp + PARALLEL_COLS_53 * (len - 2),
ADD(d1n_0, SAR(ADD(s0n_0, tmp_len_minus_1), 1)));
s1n_1 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride + VREG_INT_COUNT);
/* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */
tmp_len_minus_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2));
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
tmp_len_minus_1);
/* d1n + ((s0n + tmp_len_minus_1) >> 1) */
STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT,
ADD(d1n_1, SAR(ADD(s0n_1, tmp_len_minus_1), 1)));
} else {
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0,
ADD(d1n_0, s0n_0));
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
ADD(d1n_1, s0n_1));
}
opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride);
}
/** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or
* 16 in AVX2, when top-most pixel is on odd coordinate */
static void opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(
OPJ_INT32* tmp,
const OPJ_INT32 sn,
const OPJ_INT32 len,
OPJ_INT32* tiledp_col,
const OPJ_SIZE_T stride)
{
OPJ_INT32 i;
OPJ_SIZE_T j;
VREG s1_0, s2_0, dc_0, dn_0;
VREG s1_1, s2_1, dc_1, dn_1;
const VREG two = LOAD_CST(2);
const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
const OPJ_INT32* in_odd = &tiledp_col[0];
assert(len > 2);
#if __AVX2__
assert(PARALLEL_COLS_53 == 16);
assert(VREG_INT_COUNT == 8);
#else
assert(PARALLEL_COLS_53 == 8);
assert(VREG_INT_COUNT == 4);
#endif
/* Note: loads of input even/odd values must be done in a unaligned */
/* fashion. But stores in tmp can be done with aligned store, since */
/* the temporary buffer is properly aligned */
assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0);
s1_0 = LOADU(in_even + stride);
/* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */
dc_0 = SUB(LOADU(in_odd + 0),
SAR(ADD3(LOADU(in_even + 0), s1_0, two), 2));
STORE(tmp + PARALLEL_COLS_53 * 0, ADD(LOADU(in_even + 0), dc_0));
s1_1 = LOADU(in_even + stride + VREG_INT_COUNT);
/* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */
dc_1 = SUB(LOADU(in_odd + VREG_INT_COUNT),
SAR(ADD3(LOADU(in_even + VREG_INT_COUNT), s1_1, two), 2));
STORE(tmp + PARALLEL_COLS_53 * 0 + VREG_INT_COUNT,
ADD(LOADU(in_even + VREG_INT_COUNT), dc_1));
for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
s2_0 = LOADU(in_even + (j + 1) * stride);
s2_1 = LOADU(in_even + (j + 1) * stride + VREG_INT_COUNT);
/* dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2); */
dn_0 = SUB(LOADU(in_odd + j * stride),
SAR(ADD3(s1_0, s2_0, two), 2));
dn_1 = SUB(LOADU(in_odd + j * stride + VREG_INT_COUNT),
SAR(ADD3(s1_1, s2_1, two), 2));
STORE(tmp + PARALLEL_COLS_53 * i, dc_0);
STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1);
/* tmp[i + 1] = s1 + ((dn + dc) >> 1); */
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0,
ADD(s1_0, SAR(ADD(dn_0, dc_0), 1)));
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT,
ADD(s1_1, SAR(ADD(dn_1, dc_1), 1)));
dc_0 = dn_0;
s1_0 = s2_0;
dc_1 = dn_1;
s1_1 = s2_1;
}
STORE(tmp + PARALLEL_COLS_53 * i, dc_0);
STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1);
if (!(len & 1)) {
/*dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1); */
dn_0 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride),
SAR(ADD3(s1_0, s1_0, two), 2));
dn_1 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride + VREG_INT_COUNT),
SAR(ADD3(s1_1, s1_1, two), 2));
/* tmp[len - 2] = s1 + ((dn + dc) >> 1); */
STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 0,
ADD(s1_0, SAR(ADD(dn_0, dc_0), 1)));
STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT,
ADD(s1_1, SAR(ADD(dn_1, dc_1), 1)));
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, dn_0);
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, dn_1);
} else {
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, ADD(s1_0, dc_0));
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
ADD(s1_1, dc_1));
}
opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride);
}
#undef VREG
#undef LOAD_CST
#undef LOADU
#undef LOAD
#undef STORE
#undef STOREU
#undef ADD
#undef ADD3
#undef SUB
#undef SAR
#endif /* (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) */
#if !defined(STANDARD_SLOW_VERSION)
/** Vertical inverse 5x3 wavelet transform for one column, when top-most
* pixel is on even coordinate */
static void opj_idwt3_v_cas0(OPJ_INT32* tmp,
const OPJ_INT32 sn,
const OPJ_INT32 len,
OPJ_INT32* tiledp_col,
const OPJ_SIZE_T stride)
{
OPJ_INT32 i, j;
OPJ_INT32 d1c, d1n, s1n, s0c, s0n;
assert(len > 1);
/* Performs lifting in one single iteration. Saves memory */
/* accesses and explicit interleaving. */
s1n = tiledp_col[0];
d1n = tiledp_col[(OPJ_SIZE_T)sn * stride];
s0n = s1n - ((d1n + 1) >> 1);
for (i = 0, j = 0; i < (len - 3); i += 2, j++) {
d1c = d1n;
s0c = s0n;
s1n = tiledp_col[(OPJ_SIZE_T)(j + 1) * stride];
d1n = tiledp_col[(OPJ_SIZE_T)(sn + j + 1) * stride];
s0n = opj_int_sub_no_overflow(s1n,
opj_int_add_no_overflow(opj_int_add_no_overflow(d1c, d1n), 2) >> 2);
tmp[i ] = s0c;
tmp[i + 1] = opj_int_add_no_overflow(d1c, opj_int_add_no_overflow(s0c,
s0n) >> 1);
}
tmp[i] = s0n;
if (len & 1) {
tmp[len - 1] =
tiledp_col[(OPJ_SIZE_T)((len - 1) / 2) * stride] -
((d1n + 1) >> 1);
tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1);
} else {
tmp[len - 1] = d1n + s0n;
}
for (i = 0; i < len; ++i) {
tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i];
}
}
/** Vertical inverse 5x3 wavelet transform for one column, when top-most
* pixel is on odd coordinate */
static void opj_idwt3_v_cas1(OPJ_INT32* tmp,
const OPJ_INT32 sn,
const OPJ_INT32 len,
OPJ_INT32* tiledp_col,
const OPJ_SIZE_T stride)
{
OPJ_INT32 i, j;
OPJ_INT32 s1, s2, dc, dn;
const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
const OPJ_INT32* in_odd = &tiledp_col[0];
assert(len > 2);
/* Performs lifting in one single iteration. Saves memory */
/* accesses and explicit interleaving. */
s1 = in_even[stride];
dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2);
tmp[0] = in_even[0] + dc;
for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
s2 = in_even[(OPJ_SIZE_T)(j + 1) * stride];
dn = in_odd[(OPJ_SIZE_T)j * stride] - ((s1 + s2 + 2) >> 2);
tmp[i ] = dc;
tmp[i + 1] = s1 + ((dn + dc) >> 1);
dc = dn;
s1 = s2;
}
tmp[i] = dc;
if (!(len & 1)) {
dn = in_odd[(OPJ_SIZE_T)(len / 2 - 1) * stride] - ((s1 + 1) >> 1);
tmp[len - 2] = s1 + ((dn + dc) >> 1);
tmp[len - 1] = dn;
} else {
tmp[len - 1] = s1 + dc;
}
for (i = 0; i < len; ++i) {
tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i];
}
}
#endif /* !defined(STANDARD_SLOW_VERSION) */
/* <summary> */
/* Inverse vertical 5-3 wavelet transform in 1-D for several columns. */
/* </summary> */
/* Performs interleave, inverse wavelet transform and copy back to buffer */
static void opj_idwt53_v(const opj_dwt_t *dwt,
OPJ_INT32* tiledp_col,
OPJ_SIZE_T stride,
OPJ_INT32 nb_cols)
{
#ifdef STANDARD_SLOW_VERSION
/* For documentation purpose */
OPJ_INT32 k, c;
for (c = 0; c < nb_cols; c ++) {
opj_dwt_interleave_v(dwt, tiledp_col + c, stride);
opj_dwt_decode_1(dwt);
for (k = 0; k < dwt->sn + dwt->dn; ++k) {
tiledp_col[c + k * stride] = dwt->mem[k];
}
}
#else
const OPJ_INT32 sn = dwt->sn;
const OPJ_INT32 len = sn + dwt->dn;
if (dwt->cas == 0) {
/* If len == 1, unmodified value */
#if (defined(__SSE2__) || defined(__AVX2__))
if (len > 1 && nb_cols == PARALLEL_COLS_53) {
/* Same as below general case, except that thanks to SSE2/AVX2 */
/* we can efficiently process 8/16 columns in parallel */
opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride);
return;
}
#endif
if (len > 1) {
OPJ_INT32 c;
for (c = 0; c < nb_cols; c++, tiledp_col++) {
opj_idwt3_v_cas0(dwt->mem, sn, len, tiledp_col, stride);
}
return;
}
} else {
if (len == 1) {
OPJ_INT32 c;
for (c = 0; c < nb_cols; c++, tiledp_col++) {
tiledp_col[0] /= 2;
}
return;
}
if (len == 2) {
OPJ_INT32 c;
OPJ_INT32* out = dwt->mem;
for (c = 0; c < nb_cols; c++, tiledp_col++) {
OPJ_INT32 i;
const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
const OPJ_INT32* in_odd = &tiledp_col[0];
out[1] = in_odd[0] - ((in_even[0] + 1) >> 1);
out[0] = in_even[0] + out[1];
for (i = 0; i < len; ++i) {
tiledp_col[(OPJ_SIZE_T)i * stride] = out[i];
}
}
return;
}
#if (defined(__SSE2__) || defined(__AVX2__))
if (len > 2 && nb_cols == PARALLEL_COLS_53) {
/* Same as below general case, except that thanks to SSE2/AVX2 */
/* we can efficiently process 8/16 columns in parallel */
opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride);
return;
}
#endif
if (len > 2) {
OPJ_INT32 c;
for (c = 0; c < nb_cols; c++, tiledp_col++) {
opj_idwt3_v_cas1(dwt->mem, sn, len, tiledp_col, stride);
}
return;
}
}
#endif
}
#if 0
static void opj_dwt_encode_step1(OPJ_FLOAT32* fw,
OPJ_UINT32 end,
const OPJ_FLOAT32 c)
{
OPJ_UINT32 i = 0;
for (; i < end; ++i) {
fw[0] *= c;
fw += 2;
}
}
#else
static void opj_dwt_encode_step1_combined(OPJ_FLOAT32* fw,
OPJ_UINT32 iters_c1,
OPJ_UINT32 iters_c2,
const OPJ_FLOAT32 c1,
const OPJ_FLOAT32 c2)
{
OPJ_UINT32 i = 0;
const OPJ_UINT32 iters_common = opj_uint_min(iters_c1, iters_c2);
assert((((OPJ_SIZE_T)fw) & 0xf) == 0);
assert(opj_int_abs((OPJ_INT32)iters_c1 - (OPJ_INT32)iters_c2) <= 1);
for (; i + 3 < iters_common; i += 4) {
#ifdef __SSE__
const __m128 vcst = _mm_set_ps(c2, c1, c2, c1);
*(__m128*)fw = _mm_mul_ps(*(__m128*)fw, vcst);
*(__m128*)(fw + 4) = _mm_mul_ps(*(__m128*)(fw + 4), vcst);
#else
fw[0] *= c1;
fw[1] *= c2;
fw[2] *= c1;
fw[3] *= c2;
fw[4] *= c1;
fw[5] *= c2;
fw[6] *= c1;
fw[7] *= c2;
#endif
fw += 8;
}
for (; i < iters_common; i++) {
fw[0] *= c1;
fw[1] *= c2;
fw += 2;
}
if (i < iters_c1) {
fw[0] *= c1;
} else if (i < iters_c2) {
fw[1] *= c2;
}
}
#endif
static void opj_dwt_encode_step2(OPJ_FLOAT32* fl, OPJ_FLOAT32* fw,
OPJ_UINT32 end,
OPJ_UINT32 m,
OPJ_FLOAT32 c)
{
OPJ_UINT32 i;
OPJ_UINT32 imax = opj_uint_min(end, m);
if (imax > 0) {
fw[-1] += (fl[0] + fw[0]) * c;
fw += 2;
i = 1;
for (; i + 3 < imax; i += 4) {
fw[-1] += (fw[-2] + fw[0]) * c;
fw[1] += (fw[0] + fw[2]) * c;
fw[3] += (fw[2] + fw[4]) * c;
fw[5] += (fw[4] + fw[6]) * c;
fw += 8;
}
for (; i < imax; ++i) {
fw[-1] += (fw[-2] + fw[0]) * c;
fw += 2;
}
}
if (m < end) {
assert(m + 1 == end);
fw[-1] += (2 * fw[-2]) * c;
}
}
static void opj_dwt_encode_1_real(void *aIn, OPJ_INT32 dn, OPJ_INT32 sn,
OPJ_INT32 cas)
{
OPJ_FLOAT32* w = (OPJ_FLOAT32*)aIn;
OPJ_INT32 a, b;
assert(dn + sn > 1);
if (cas == 0) {
a = 0;
b = 1;
} else {
a = 1;
b = 0;
}
opj_dwt_encode_step2(w + a, w + b + 1,
(OPJ_UINT32)dn,
(OPJ_UINT32)opj_int_min(dn, sn - b),
opj_dwt_alpha);
opj_dwt_encode_step2(w + b, w + a + 1,
(OPJ_UINT32)sn,
(OPJ_UINT32)opj_int_min(sn, dn - a),
opj_dwt_beta);
opj_dwt_encode_step2(w + a, w + b + 1,
(OPJ_UINT32)dn,
(OPJ_UINT32)opj_int_min(dn, sn - b),
opj_dwt_gamma);
opj_dwt_encode_step2(w + b, w + a + 1,
(OPJ_UINT32)sn,
(OPJ_UINT32)opj_int_min(sn, dn - a),
opj_dwt_delta);
#if 0
opj_dwt_encode_step1(w + b, (OPJ_UINT32)dn,
opj_K);
opj_dwt_encode_step1(w + a, (OPJ_UINT32)sn,
opj_invK);
#else
if (a == 0) {
opj_dwt_encode_step1_combined(w,
(OPJ_UINT32)sn,
(OPJ_UINT32)dn,
opj_invK,
opj_K);
} else {
opj_dwt_encode_step1_combined(w,
(OPJ_UINT32)dn,
(OPJ_UINT32)sn,
opj_K,
opj_invK);
}
#endif
}
static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps,
opj_stepsize_t *bandno_stepsize)
{
OPJ_INT32 p, n;
p = opj_int_floorlog2(stepsize) - 13;
n = 11 - opj_int_floorlog2(stepsize);
bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
bandno_stepsize->expn = numbps - p;
}
/*
==========================================================
DWT interface
==========================================================
*/
/** Process one line for the horizontal pass of the 5x3 forward transform */
static
void opj_dwt_encode_and_deinterleave_h_one_row(void* rowIn,
void* tmpIn,
OPJ_UINT32 width,
OPJ_BOOL even)
{
OPJ_INT32* OPJ_RESTRICT row = (OPJ_INT32*)rowIn;
OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32*)tmpIn;
const OPJ_INT32 sn = (OPJ_INT32)((width + (even ? 1 : 0)) >> 1);
const OPJ_INT32 dn = (OPJ_INT32)(width - (OPJ_UINT32)sn);
if (even) {
if (width > 1) {
OPJ_INT32 i;
for (i = 0; i < sn - 1; i++) {
tmp[sn + i] = row[2 * i + 1] - ((row[(i) * 2] + row[(i + 1) * 2]) >> 1);
}
if ((width % 2) == 0) {
tmp[sn + i] = row[2 * i + 1] - row[(i) * 2];
}
row[0] += (tmp[sn] + tmp[sn] + 2) >> 2;
for (i = 1; i < dn; i++) {
row[i] = row[2 * i] + ((tmp[sn + (i - 1)] + tmp[sn + i] + 2) >> 2);
}
if ((width % 2) == 1) {
row[i] = row[2 * i] + ((tmp[sn + (i - 1)] + tmp[sn + (i - 1)] + 2) >> 2);
}
memcpy(row + sn, tmp + sn, (OPJ_SIZE_T)dn * sizeof(OPJ_INT32));
}
} else {
if (width == 1) {
row[0] *= 2;
} else {
OPJ_INT32 i;
tmp[sn + 0] = row[0] - row[1];
for (i = 1; i < sn; i++) {
tmp[sn + i] = row[2 * i] - ((row[2 * i + 1] + row[2 * (i - 1) + 1]) >> 1);
}
if ((width % 2) == 1) {
tmp[sn + i] = row[2 * i] - row[2 * (i - 1) + 1];
}
for (i = 0; i < dn - 1; i++) {
row[i] = row[2 * i + 1] + ((tmp[sn + i] + tmp[sn + i + 1] + 2) >> 2);
}
if ((width % 2) == 0) {
row[i] = row[2 * i + 1] + ((tmp[sn + i] + tmp[sn + i] + 2) >> 2);
}
memcpy(row + sn, tmp + sn, (OPJ_SIZE_T)dn * sizeof(OPJ_INT32));
}
}
}
/** Process one line for the horizontal pass of the 9x7 forward transform */
static
void opj_dwt_encode_and_deinterleave_h_one_row_real(void* rowIn,
void* tmpIn,
OPJ_UINT32 width,
OPJ_BOOL even)
{
OPJ_FLOAT32* OPJ_RESTRICT row = (OPJ_FLOAT32*)rowIn;
OPJ_FLOAT32* OPJ_RESTRICT tmp = (OPJ_FLOAT32*)tmpIn;
const OPJ_INT32 sn = (OPJ_INT32)((width + (even ? 1 : 0)) >> 1);
const OPJ_INT32 dn = (OPJ_INT32)(width - (OPJ_UINT32)sn);
if (width == 1) {
return;
}
memcpy(tmp, row, width * sizeof(OPJ_FLOAT32));
opj_dwt_encode_1_real(tmp, dn, sn, even ? 0 : 1);
opj_dwt_deinterleave_h((OPJ_INT32 * OPJ_RESTRICT)tmp,
(OPJ_INT32 * OPJ_RESTRICT)row,
dn, sn, even ? 0 : 1);
}
typedef struct {
opj_dwt_t h;
OPJ_UINT32 rw; /* Width of the resolution to process */
OPJ_UINT32 w; /* Width of tiledp */
OPJ_INT32 * OPJ_RESTRICT tiledp;
OPJ_UINT32 min_j;
OPJ_UINT32 max_j;
opj_encode_and_deinterleave_h_one_row_fnptr_type p_function;
} opj_dwt_encode_h_job_t;
static void opj_dwt_encode_h_func(void* user_data, opj_tls_t* tls)
{
OPJ_UINT32 j;
opj_dwt_encode_h_job_t* job;
(void)tls;
job = (opj_dwt_encode_h_job_t*)user_data;
for (j = job->min_j; j < job->max_j; j++) {
OPJ_INT32* OPJ_RESTRICT aj = job->tiledp + j * job->w;
(*job->p_function)(aj, job->h.mem, job->rw,
job->h.cas == 0 ? OPJ_TRUE : OPJ_FALSE);
}
opj_aligned_free(job->h.mem);
opj_free(job);
}
typedef struct {
opj_dwt_t v;
OPJ_UINT32 rh;
OPJ_UINT32 w;
OPJ_INT32 * OPJ_RESTRICT tiledp;
OPJ_UINT32 min_j;
OPJ_UINT32 max_j;
opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v;
} opj_dwt_encode_v_job_t;
static void opj_dwt_encode_v_func(void* user_data, opj_tls_t* tls)
{
OPJ_UINT32 j;
opj_dwt_encode_v_job_t* job;
(void)tls;
job = (opj_dwt_encode_v_job_t*)user_data;
for (j = job->min_j; j + NB_ELTS_V8 - 1 < job->max_j; j += NB_ELTS_V8) {
(*job->p_encode_and_deinterleave_v)(job->tiledp + j,
job->v.mem,
job->rh,
job->v.cas == 0,
job->w,
NB_ELTS_V8);
}
if (j < job->max_j) {
(*job->p_encode_and_deinterleave_v)(job->tiledp + j,
job->v.mem,
job->rh,
job->v.cas == 0,
job->w,
job->max_j - j);
}
opj_aligned_free(job->v.mem);
opj_free(job);
}
/** Fetch up to cols <= NB_ELTS_V8 for each line, and put them in tmpOut */
/* that has a NB_ELTS_V8 interleave factor. */
static void opj_dwt_fetch_cols_vertical_pass(const void *arrayIn,
void *tmpOut,
OPJ_UINT32 height,
OPJ_UINT32 stride_width,
OPJ_UINT32 cols)
{
const OPJ_INT32* OPJ_RESTRICT array = (const OPJ_INT32 * OPJ_RESTRICT)arrayIn;
OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32 * OPJ_RESTRICT)tmpOut;
if (cols == NB_ELTS_V8) {
OPJ_UINT32 k;
for (k = 0; k < height; ++k) {
memcpy(tmp + NB_ELTS_V8 * k,
array + k * stride_width,
NB_ELTS_V8 * sizeof(OPJ_INT32));
}
} else {
OPJ_UINT32 k;
for (k = 0; k < height; ++k) {
OPJ_UINT32 c;
for (c = 0; c < cols; c++) {
tmp[NB_ELTS_V8 * k + c] = array[c + k * stride_width];
}
for (; c < NB_ELTS_V8; c++) {
tmp[NB_ELTS_V8 * k + c] = 0;
}
}
}
}
/* Deinterleave result of forward transform, where cols <= NB_ELTS_V8 */
/* and src contains NB_ELTS_V8 consecutive values for up to NB_ELTS_V8 */
/* columns. */
static INLINE void opj_dwt_deinterleave_v_cols(
const OPJ_INT32 * OPJ_RESTRICT src,
OPJ_INT32 * OPJ_RESTRICT dst,
OPJ_INT32 dn,
OPJ_INT32 sn,
OPJ_UINT32 stride_width,
OPJ_INT32 cas,
OPJ_UINT32 cols)
{
OPJ_INT32 k;
OPJ_INT32 i = sn;
OPJ_INT32 * OPJ_RESTRICT l_dest = dst;
const OPJ_INT32 * OPJ_RESTRICT l_src = src + cas * NB_ELTS_V8;
OPJ_UINT32 c;
for (k = 0; k < 2; k++) {
while (i--) {
if (cols == NB_ELTS_V8) {
memcpy(l_dest, l_src, NB_ELTS_V8 * sizeof(OPJ_INT32));
} else {
c = 0;
switch (cols) {
case 7:
l_dest[c] = l_src[c];
c++; /* fallthru */
case 6:
l_dest[c] = l_src[c];
c++; /* fallthru */
case 5:
l_dest[c] = l_src[c];
c++; /* fallthru */
case 4:
l_dest[c] = l_src[c];
c++; /* fallthru */
case 3:
l_dest[c] = l_src[c];
c++; /* fallthru */
case 2:
l_dest[c] = l_src[c];
c++; /* fallthru */
default:
l_dest[c] = l_src[c];
break;
}
}
l_dest += stride_width;
l_src += 2 * NB_ELTS_V8;
}
l_dest = dst + (OPJ_SIZE_T)sn * (OPJ_SIZE_T)stride_width;
l_src = src + (1 - cas) * NB_ELTS_V8;
i = dn;
}
}
/* Forward 5-3 transform, for the vertical pass, processing cols columns */
/* where cols <= NB_ELTS_V8 */
static void opj_dwt_encode_and_deinterleave_v(
void *arrayIn,
void *tmpIn,
OPJ_UINT32 height,
OPJ_BOOL even,
OPJ_UINT32 stride_width,
OPJ_UINT32 cols)
{
OPJ_INT32* OPJ_RESTRICT array = (OPJ_INT32 * OPJ_RESTRICT)arrayIn;
OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32 * OPJ_RESTRICT)tmpIn;
const OPJ_UINT32 sn = (height + (even ? 1 : 0)) >> 1;
const OPJ_UINT32 dn = height - sn;
opj_dwt_fetch_cols_vertical_pass(arrayIn, tmpIn, height, stride_width, cols);
#define OPJ_Sc(i) tmp[(i)*2* NB_ELTS_V8 + c]
#define OPJ_Dc(i) tmp[((1+(i)*2))* NB_ELTS_V8 + c]
#ifdef __SSE2__
if (height == 1) {
if (!even) {
OPJ_UINT32 c;
for (c = 0; c < NB_ELTS_V8; c++) {
tmp[c] *= 2;
}
}
} else if (even) {
OPJ_UINT32 c;
OPJ_UINT32 i;
i = 0;
if (i + 1 < sn) {
__m128i xmm_Si_0 = *(const __m128i*)(tmp + 4 * 0);
__m128i xmm_Si_1 = *(const __m128i*)(tmp + 4 * 1);
for (; i + 1 < sn; i++) {
__m128i xmm_Sip1_0 = *(const __m128i*)(tmp +
(i + 1) * 2 * NB_ELTS_V8 + 4 * 0);
__m128i xmm_Sip1_1 = *(const __m128i*)(tmp +
(i + 1) * 2 * NB_ELTS_V8 + 4 * 1);
__m128i xmm_Di_0 = *(const __m128i*)(tmp +
(1 + i * 2) * NB_ELTS_V8 + 4 * 0);
__m128i xmm_Di_1 = *(const __m128i*)(tmp +
(1 + i * 2) * NB_ELTS_V8 + 4 * 1);
xmm_Di_0 = _mm_sub_epi32(xmm_Di_0,
_mm_srai_epi32(_mm_add_epi32(xmm_Si_0, xmm_Sip1_0), 1));
xmm_Di_1 = _mm_sub_epi32(xmm_Di_1,
_mm_srai_epi32(_mm_add_epi32(xmm_Si_1, xmm_Sip1_1), 1));
*(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Di_0;
*(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Di_1;
xmm_Si_0 = xmm_Sip1_0;
xmm_Si_1 = xmm_Sip1_1;
}
}
if (((height) % 2) == 0) {
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Dc(i) -= OPJ_Sc(i);
}
}
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Sc(0) += (OPJ_Dc(0) + OPJ_Dc(0) + 2) >> 2;
}
i = 1;
if (i < dn) {
__m128i xmm_Dim1_0 = *(const __m128i*)(tmp + (1 +
(i - 1) * 2) * NB_ELTS_V8 + 4 * 0);
__m128i xmm_Dim1_1 = *(const __m128i*)(tmp + (1 +
(i - 1) * 2) * NB_ELTS_V8 + 4 * 1);
const __m128i xmm_two = _mm_set1_epi32(2);
for (; i < dn; i++) {
__m128i xmm_Di_0 = *(const __m128i*)(tmp +
(1 + i * 2) * NB_ELTS_V8 + 4 * 0);
__m128i xmm_Di_1 = *(const __m128i*)(tmp +
(1 + i * 2) * NB_ELTS_V8 + 4 * 1);
__m128i xmm_Si_0 = *(const __m128i*)(tmp +
(i * 2) * NB_ELTS_V8 + 4 * 0);
__m128i xmm_Si_1 = *(const __m128i*)(tmp +
(i * 2) * NB_ELTS_V8 + 4 * 1);
xmm_Si_0 = _mm_add_epi32(xmm_Si_0,
_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Dim1_0, xmm_Di_0), xmm_two), 2));
xmm_Si_1 = _mm_add_epi32(xmm_Si_1,
_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Dim1_1, xmm_Di_1), xmm_two), 2));
*(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Si_0;
*(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Si_1;
xmm_Dim1_0 = xmm_Di_0;
xmm_Dim1_1 = xmm_Di_1;
}
}
if (((height) % 2) == 1) {
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i - 1) + 2) >> 2;
}
}
} else {
OPJ_UINT32 c;
OPJ_UINT32 i;
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Sc(0) -= OPJ_Dc(0);
}
i = 1;
if (i < sn) {
__m128i xmm_Dim1_0 = *(const __m128i*)(tmp + (1 +
(i - 1) * 2) * NB_ELTS_V8 + 4 * 0);
__m128i xmm_Dim1_1 = *(const __m128i*)(tmp + (1 +
(i - 1) * 2) * NB_ELTS_V8 + 4 * 1);
for (; i < sn; i++) {
__m128i xmm_Di_0 = *(const __m128i*)(tmp +
(1 + i * 2) * NB_ELTS_V8 + 4 * 0);
__m128i xmm_Di_1 = *(const __m128i*)(tmp +
(1 + i * 2) * NB_ELTS_V8 + 4 * 1);
__m128i xmm_Si_0 = *(const __m128i*)(tmp +
(i * 2) * NB_ELTS_V8 + 4 * 0);
__m128i xmm_Si_1 = *(const __m128i*)(tmp +
(i * 2) * NB_ELTS_V8 + 4 * 1);
xmm_Si_0 = _mm_sub_epi32(xmm_Si_0,
_mm_srai_epi32(_mm_add_epi32(xmm_Di_0, xmm_Dim1_0), 1));
xmm_Si_1 = _mm_sub_epi32(xmm_Si_1,
_mm_srai_epi32(_mm_add_epi32(xmm_Di_1, xmm_Dim1_1), 1));
*(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Si_0;
*(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Si_1;
xmm_Dim1_0 = xmm_Di_0;
xmm_Dim1_1 = xmm_Di_1;
}
}
if (((height) % 2) == 1) {
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Sc(i) -= OPJ_Dc(i - 1);
}
}
i = 0;
if (i + 1 < dn) {
__m128i xmm_Si_0 = *((const __m128i*)(tmp + 4 * 0));
__m128i xmm_Si_1 = *((const __m128i*)(tmp + 4 * 1));
const __m128i xmm_two = _mm_set1_epi32(2);
for (; i + 1 < dn; i++) {
__m128i xmm_Sip1_0 = *(const __m128i*)(tmp +
(i + 1) * 2 * NB_ELTS_V8 + 4 * 0);
__m128i xmm_Sip1_1 = *(const __m128i*)(tmp +
(i + 1) * 2 * NB_ELTS_V8 + 4 * 1);
__m128i xmm_Di_0 = *(const __m128i*)(tmp +
(1 + i * 2) * NB_ELTS_V8 + 4 * 0);
__m128i xmm_Di_1 = *(const __m128i*)(tmp +
(1 + i * 2) * NB_ELTS_V8 + 4 * 1);
xmm_Di_0 = _mm_add_epi32(xmm_Di_0,
_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Si_0, xmm_Sip1_0), xmm_two), 2));
xmm_Di_1 = _mm_add_epi32(xmm_Di_1,
_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Si_1, xmm_Sip1_1), xmm_two), 2));
*(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Di_0;
*(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Di_1;
xmm_Si_0 = xmm_Sip1_0;
xmm_Si_1 = xmm_Sip1_1;
}
}
if (((height) % 2) == 0) {
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i) + 2) >> 2;
}
}
}
#else
if (even) {
OPJ_UINT32 c;
if (height > 1) {
OPJ_UINT32 i;
for (i = 0; i + 1 < sn; i++) {
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Dc(i) -= (OPJ_Sc(i) + OPJ_Sc(i + 1)) >> 1;
}
}
if (((height) % 2) == 0) {
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Dc(i) -= OPJ_Sc(i);
}
}
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Sc(0) += (OPJ_Dc(0) + OPJ_Dc(0) + 2) >> 2;
}
for (i = 1; i < dn; i++) {
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i) + 2) >> 2;
}
}
if (((height) % 2) == 1) {
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i - 1) + 2) >> 2;
}
}
}
} else {
OPJ_UINT32 c;
if (height == 1) {
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Sc(0) *= 2;
}
} else {
OPJ_UINT32 i;
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Sc(0) -= OPJ_Dc(0);
}
for (i = 1; i < sn; i++) {
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Sc(i) -= (OPJ_Dc(i) + OPJ_Dc(i - 1)) >> 1;
}
}
if (((height) % 2) == 1) {
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Sc(i) -= OPJ_Dc(i - 1);
}
}
for (i = 0; i + 1 < dn; i++) {
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i + 1) + 2) >> 2;
}
}
if (((height) % 2) == 0) {
for (c = 0; c < NB_ELTS_V8; c++) {
OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i) + 2) >> 2;
}
}
}
}
#endif
if (cols == NB_ELTS_V8) {
opj_dwt_deinterleave_v_cols(tmp, array, (OPJ_INT32)dn, (OPJ_INT32)sn,
stride_width, even ? 0 : 1, NB_ELTS_V8);
} else {
opj_dwt_deinterleave_v_cols(tmp, array, (OPJ_INT32)dn, (OPJ_INT32)sn,
stride_width, even ? 0 : 1, cols);
}
}
static void opj_v8dwt_encode_step1(OPJ_FLOAT32* fw,
OPJ_UINT32 end,
const OPJ_FLOAT32 cst)
{
OPJ_UINT32 i;
#ifdef __SSE__
__m128* vw = (__m128*) fw;
const __m128 vcst = _mm_set1_ps(cst);
for (i = 0; i < end; ++i) {
vw[0] = _mm_mul_ps(vw[0], vcst);
vw[1] = _mm_mul_ps(vw[1], vcst);
vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128));
}
#else
OPJ_UINT32 c;
for (i = 0; i < end; ++i) {
for (c = 0; c < NB_ELTS_V8; c++) {
fw[i * 2 * NB_ELTS_V8 + c] *= cst;
}
}
#endif
}
static void opj_v8dwt_encode_step2(OPJ_FLOAT32* fl, OPJ_FLOAT32* fw,
OPJ_UINT32 end,
OPJ_UINT32 m,
OPJ_FLOAT32 cst)
{
OPJ_UINT32 i;
OPJ_UINT32 imax = opj_uint_min(end, m);
#ifdef __SSE__
__m128* vw = (__m128*) fw;
__m128 vcst = _mm_set1_ps(cst);
if (imax > 0) {
__m128* vl = (__m128*) fl;
vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vl[0], vw[0]), vcst));
vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vl[1], vw[1]), vcst));
vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128));
i = 1;
for (; i < imax; ++i) {
vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vw[-4], vw[0]), vcst));
vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vw[-3], vw[1]), vcst));
vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128));
}
}
if (m < end) {
assert(m + 1 == end);
vcst = _mm_add_ps(vcst, vcst);
vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(vw[-4], vcst));
vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(vw[-3], vcst));
}
#else
OPJ_INT32 c;
if (imax > 0) {
for (c = 0; c < NB_ELTS_V8; c++) {
fw[-1 * NB_ELTS_V8 + c] += (fl[0 * NB_ELTS_V8 + c] + fw[0 * NB_ELTS_V8 + c]) *
cst;
}
fw += 2 * NB_ELTS_V8;
i = 1;
for (; i < imax; ++i) {
for (c = 0; c < NB_ELTS_V8; c++) {
fw[-1 * NB_ELTS_V8 + c] += (fw[-2 * NB_ELTS_V8 + c] + fw[0 * NB_ELTS_V8 + c]) *
cst;
}
fw += 2 * NB_ELTS_V8;
}
}
if (m < end) {
assert(m + 1 == end);
for (c = 0; c < NB_ELTS_V8; c++) {
fw[-1 * NB_ELTS_V8 + c] += (2 * fw[-2 * NB_ELTS_V8 + c]) * cst;
}
}
#endif
}
/* Forward 9-7 transform, for the vertical pass, processing cols columns */
/* where cols <= NB_ELTS_V8 */
static void opj_dwt_encode_and_deinterleave_v_real(
void *arrayIn,
void *tmpIn,
OPJ_UINT32 height,
OPJ_BOOL even,
OPJ_UINT32 stride_width,
OPJ_UINT32 cols)
{
OPJ_FLOAT32* OPJ_RESTRICT array = (OPJ_FLOAT32 * OPJ_RESTRICT)arrayIn;
OPJ_FLOAT32* OPJ_RESTRICT tmp = (OPJ_FLOAT32 * OPJ_RESTRICT)tmpIn;
const OPJ_INT32 sn = (OPJ_INT32)((height + (even ? 1 : 0)) >> 1);
const OPJ_INT32 dn = (OPJ_INT32)(height - (OPJ_UINT32)sn);
OPJ_INT32 a, b;
if (height == 1) {
return;
}
opj_dwt_fetch_cols_vertical_pass(arrayIn, tmpIn, height, stride_width, cols);
if (even) {
a = 0;
b = 1;
} else {
a = 1;
b = 0;
}
opj_v8dwt_encode_step2(tmp + a * NB_ELTS_V8,
tmp + (b + 1) * NB_ELTS_V8,
(OPJ_UINT32)dn,
(OPJ_UINT32)opj_int_min(dn, sn - b),
opj_dwt_alpha);
opj_v8dwt_encode_step2(tmp + b * NB_ELTS_V8,
tmp + (a + 1) * NB_ELTS_V8,
(OPJ_UINT32)sn,
(OPJ_UINT32)opj_int_min(sn, dn - a),
opj_dwt_beta);
opj_v8dwt_encode_step2(tmp + a * NB_ELTS_V8,
tmp + (b + 1) * NB_ELTS_V8,
(OPJ_UINT32)dn,
(OPJ_UINT32)opj_int_min(dn, sn - b),
opj_dwt_gamma);
opj_v8dwt_encode_step2(tmp + b * NB_ELTS_V8,
tmp + (a + 1) * NB_ELTS_V8,
(OPJ_UINT32)sn,
(OPJ_UINT32)opj_int_min(sn, dn - a),
opj_dwt_delta);
opj_v8dwt_encode_step1(tmp + b * NB_ELTS_V8, (OPJ_UINT32)dn,
opj_K);
opj_v8dwt_encode_step1(tmp + a * NB_ELTS_V8, (OPJ_UINT32)sn,
opj_invK);
if (cols == NB_ELTS_V8) {
opj_dwt_deinterleave_v_cols((OPJ_INT32*)tmp,
(OPJ_INT32*)array,
(OPJ_INT32)dn, (OPJ_INT32)sn,
stride_width, even ? 0 : 1, NB_ELTS_V8);
} else {
opj_dwt_deinterleave_v_cols((OPJ_INT32*)tmp,
(OPJ_INT32*)array,
(OPJ_INT32)dn, (OPJ_INT32)sn,
stride_width, even ? 0 : 1, cols);
}
}
/* <summary> */
/* Forward 5-3 wavelet transform in 2-D. */
/* </summary> */
static INLINE OPJ_BOOL opj_dwt_encode_procedure(opj_thread_pool_t* tp,
opj_tcd_tilecomp_t * tilec,
opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v,
opj_encode_and_deinterleave_h_one_row_fnptr_type
p_encode_and_deinterleave_h_one_row)
{
OPJ_INT32 i;
OPJ_INT32 *bj = 00;
OPJ_UINT32 w;
OPJ_INT32 l;
OPJ_SIZE_T l_data_size;
opj_tcd_resolution_t * l_cur_res = 0;
opj_tcd_resolution_t * l_last_res = 0;
const int num_threads = opj_thread_pool_get_thread_count(tp);
OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data;
w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
l = (OPJ_INT32)tilec->numresolutions - 1;
l_cur_res = tilec->resolutions + l;
l_last_res = l_cur_res - 1;
l_data_size = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions);
/* overflow check */
if (l_data_size > (SIZE_MAX / (NB_ELTS_V8 * sizeof(OPJ_INT32)))) {
/* FIXME event manager error callback */
return OPJ_FALSE;
}
l_data_size *= NB_ELTS_V8 * sizeof(OPJ_INT32);
bj = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size);
/* l_data_size is equal to 0 when numresolutions == 1 but bj is not used */
/* in that case, so do not error out */
if (l_data_size != 0 && ! bj) {
return OPJ_FALSE;
}
i = l;
while (i--) {
OPJ_UINT32 j;
OPJ_UINT32 rw; /* width of the resolution level computed */
OPJ_UINT32 rh; /* height of the resolution level computed */
OPJ_UINT32
rw1; /* width of the resolution level once lower than computed one */
OPJ_UINT32
rh1; /* height of the resolution level once lower than computed one */
OPJ_INT32 cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
OPJ_INT32 cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */
OPJ_INT32 dn, sn;
rw = (OPJ_UINT32)(l_cur_res->x1 - l_cur_res->x0);
rh = (OPJ_UINT32)(l_cur_res->y1 - l_cur_res->y0);
rw1 = (OPJ_UINT32)(l_last_res->x1 - l_last_res->x0);
rh1 = (OPJ_UINT32)(l_last_res->y1 - l_last_res->y0);
cas_row = l_cur_res->x0 & 1;
cas_col = l_cur_res->y0 & 1;
sn = (OPJ_INT32)rh1;
dn = (OPJ_INT32)(rh - rh1);
/* Perform vertical pass */
if (num_threads <= 1 || rw < 2 * NB_ELTS_V8) {
for (j = 0; j + NB_ELTS_V8 - 1 < rw; j += NB_ELTS_V8) {
p_encode_and_deinterleave_v(tiledp + j,
bj,
rh,
cas_col == 0,
w,
NB_ELTS_V8);
}
if (j < rw) {
p_encode_and_deinterleave_v(tiledp + j,
bj,
rh,
cas_col == 0,
w,
rw - j);
}
} else {
OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
OPJ_UINT32 step_j;
if (rw < num_jobs) {
num_jobs = rw;
}
step_j = ((rw / num_jobs) / NB_ELTS_V8) * NB_ELTS_V8;
for (j = 0; j < num_jobs; j++) {
opj_dwt_encode_v_job_t* job;
job = (opj_dwt_encode_v_job_t*) opj_malloc(sizeof(opj_dwt_encode_v_job_t));
if (!job) {
opj_thread_pool_wait_completion(tp, 0);
opj_aligned_free(bj);
return OPJ_FALSE;
}
job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size);
if (!job->v.mem) {
opj_thread_pool_wait_completion(tp, 0);
opj_free(job);
opj_aligned_free(bj);
return OPJ_FALSE;
}
job->v.dn = dn;
job->v.sn = sn;
job->v.cas = cas_col;
job->rh = rh;
job->w = w;
job->tiledp = tiledp;
job->min_j = j * step_j;
job->max_j = (j + 1 == num_jobs) ? rw : (j + 1) * step_j;
job->p_encode_and_deinterleave_v = p_encode_and_deinterleave_v;
opj_thread_pool_submit_job(tp, opj_dwt_encode_v_func, job);
}
opj_thread_pool_wait_completion(tp, 0);
}
sn = (OPJ_INT32)rw1;
dn = (OPJ_INT32)(rw - rw1);
/* Perform horizontal pass */
if (num_threads <= 1 || rh <= 1) {
for (j = 0; j < rh; j++) {
OPJ_INT32* OPJ_RESTRICT aj = tiledp + j * w;
(*p_encode_and_deinterleave_h_one_row)(aj, bj, rw,
cas_row == 0 ? OPJ_TRUE : OPJ_FALSE);
}
} else {
OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
OPJ_UINT32 step_j;
if (rh < num_jobs) {
num_jobs = rh;
}
step_j = (rh / num_jobs);
for (j = 0; j < num_jobs; j++) {
opj_dwt_encode_h_job_t* job;
job = (opj_dwt_encode_h_job_t*) opj_malloc(sizeof(opj_dwt_encode_h_job_t));
if (!job) {
opj_thread_pool_wait_completion(tp, 0);
opj_aligned_free(bj);
return OPJ_FALSE;
}
job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size);
if (!job->h.mem) {
opj_thread_pool_wait_completion(tp, 0);
opj_free(job);
opj_aligned_free(bj);
return OPJ_FALSE;
}
job->h.dn = dn;
job->h.sn = sn;
job->h.cas = cas_row;
job->rw = rw;
job->w = w;
job->tiledp = tiledp;
job->min_j = j * step_j;
job->max_j = (j + 1U) * step_j; /* this can overflow */
if (j == (num_jobs - 1U)) { /* this will take care of the overflow */
job->max_j = rh;
}
job->p_function = p_encode_and_deinterleave_h_one_row;
opj_thread_pool_submit_job(tp, opj_dwt_encode_h_func, job);
}
opj_thread_pool_wait_completion(tp, 0);
}
l_cur_res = l_last_res;
--l_last_res;
}
opj_aligned_free(bj);
return OPJ_TRUE;
}
/* Forward 5-3 wavelet transform in 2-D. */
/* </summary> */
OPJ_BOOL opj_dwt_encode(opj_tcd_t *p_tcd,
opj_tcd_tilecomp_t * tilec)
{
return opj_dwt_encode_procedure(p_tcd->thread_pool, tilec,
opj_dwt_encode_and_deinterleave_v,
opj_dwt_encode_and_deinterleave_h_one_row);
}
/* <summary> */
/* Inverse 5-3 wavelet transform in 2-D. */
/* </summary> */
OPJ_BOOL opj_dwt_decode(opj_tcd_t *p_tcd, opj_tcd_tilecomp_t* tilec,
OPJ_UINT32 numres)
{
if (p_tcd->whole_tile_decoding) {
return opj_dwt_decode_tile(p_tcd->thread_pool, tilec, numres);
} else {
return opj_dwt_decode_partial_tile(tilec, numres);
}
}
/* <summary> */
/* Get norm of 5-3 wavelet. */
/* </summary> */
OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient)
{
/* FIXME ! This is just a band-aid to avoid a buffer overflow */
/* but the array should really be extended up to 33 resolution levels */
/* See https://github.com/uclouvain/openjpeg/issues/493 */
if (orient == 0 && level >= 10) {
level = 9;
} else if (orient > 0 && level >= 9) {
level = 8;
}
return opj_dwt_norms[orient][level];
}
/* <summary> */
/* Forward 9-7 wavelet transform in 2-D. */
/* </summary> */
OPJ_BOOL opj_dwt_encode_real(opj_tcd_t *p_tcd,
opj_tcd_tilecomp_t * tilec)
{
return opj_dwt_encode_procedure(p_tcd->thread_pool, tilec,
opj_dwt_encode_and_deinterleave_v_real,
opj_dwt_encode_and_deinterleave_h_one_row_real);
}
/* <summary> */
/* Get norm of 9-7 wavelet. */
/* </summary> */
OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient)
{
/* FIXME ! This is just a band-aid to avoid a buffer overflow */
/* but the array should really be extended up to 33 resolution levels */
/* See https://github.com/uclouvain/openjpeg/issues/493 */
if (orient == 0 && level >= 10) {
level = 9;
} else if (orient > 0 && level >= 9) {
level = 8;
}
return opj_dwt_norms_real[orient][level];
}
void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec)
{
OPJ_UINT32 numbands, bandno;
numbands = 3 * tccp->numresolutions - 2;
for (bandno = 0; bandno < numbands; bandno++) {
OPJ_FLOAT64 stepsize;
OPJ_UINT32 resno, level, orient, gain;
resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
level = tccp->numresolutions - 1 - resno;
gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) ||
(orient == 2)) ? 1 : 2));
if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
stepsize = 1.0;
} else {
OPJ_FLOAT64 norm = opj_dwt_getnorm_real(level, orient);
stepsize = (1 << (gain)) / norm;
}
opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0),
(OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]);
}
}
/* <summary> */
/* Determine maximum computed resolution level for inverse wavelet transform */
/* </summary> */
static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r,
OPJ_UINT32 i)
{
OPJ_UINT32 mr = 0;
OPJ_UINT32 w;
while (--i) {
++r;
if (mr < (w = (OPJ_UINT32)(r->x1 - r->x0))) {
mr = w ;
}
if (mr < (w = (OPJ_UINT32)(r->y1 - r->y0))) {
mr = w ;
}
}
return mr ;
}
typedef struct {
opj_dwt_t h;
OPJ_UINT32 rw;
OPJ_UINT32 w;
OPJ_INT32 * OPJ_RESTRICT tiledp;
OPJ_UINT32 min_j;
OPJ_UINT32 max_j;
} opj_dwt_decode_h_job_t;
static void opj_dwt_decode_h_func(void* user_data, opj_tls_t* tls)
{
OPJ_UINT32 j;
opj_dwt_decode_h_job_t* job;
(void)tls;
job = (opj_dwt_decode_h_job_t*)user_data;
for (j = job->min_j; j < job->max_j; j++) {
opj_idwt53_h(&job->h, &job->tiledp[j * job->w]);
}
opj_aligned_free(job->h.mem);
opj_free(job);
}
typedef struct {
opj_dwt_t v;
OPJ_UINT32 rh;
OPJ_UINT32 w;
OPJ_INT32 * OPJ_RESTRICT tiledp;
OPJ_UINT32 min_j;
OPJ_UINT32 max_j;
} opj_dwt_decode_v_job_t;
static void opj_dwt_decode_v_func(void* user_data, opj_tls_t* tls)
{
OPJ_UINT32 j;
opj_dwt_decode_v_job_t* job;
(void)tls;
job = (opj_dwt_decode_v_job_t*)user_data;
for (j = job->min_j; j + PARALLEL_COLS_53 <= job->max_j;
j += PARALLEL_COLS_53) {
opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w,
PARALLEL_COLS_53);
}
if (j < job->max_j)
opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w,
(OPJ_INT32)(job->max_j - j));
opj_aligned_free(job->v.mem);
opj_free(job);
}
/* <summary> */
/* Inverse wavelet transform in 2-D. */
/* </summary> */
static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres)
{
opj_dwt_t h;
opj_dwt_t v;
opj_tcd_resolution_t* tr = tilec->resolutions;
OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
tr->x0); /* width of the resolution level computed */
OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
tr->y0); /* height of the resolution level computed */
OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions -
1].x1 -
tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
OPJ_SIZE_T h_mem_size;
int num_threads;
/* Not entirely sure for the return code of w == 0 which is triggered per */
/* https://github.com/uclouvain/openjpeg/issues/1505 */
if (numres == 1U || w == 0) {
return OPJ_TRUE;
}
num_threads = opj_thread_pool_get_thread_count(tp);
h.mem_count = opj_dwt_max_resolution(tr, numres);
/* overflow check */
if (h.mem_count > (SIZE_MAX / PARALLEL_COLS_53 / sizeof(OPJ_INT32))) {
/* FIXME event manager error callback */
return OPJ_FALSE;
}
/* We need PARALLEL_COLS_53 times the height of the array, */
/* since for the vertical pass */
/* we process PARALLEL_COLS_53 columns at a time */
h_mem_size = h.mem_count * PARALLEL_COLS_53 * sizeof(OPJ_INT32);
h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
if (! h.mem) {
/* FIXME event manager error callback */
return OPJ_FALSE;
}
v.mem_count = h.mem_count;
v.mem = h.mem;
while (--numres) {
OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data;
OPJ_UINT32 j;
++tr;
h.sn = (OPJ_INT32)rw;
v.sn = (OPJ_INT32)rh;
rw = (OPJ_UINT32)(tr->x1 - tr->x0);
rh = (OPJ_UINT32)(tr->y1 - tr->y0);
h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
h.cas = tr->x0 % 2;
if (num_threads <= 1 || rh <= 1) {
for (j = 0; j < rh; ++j) {
opj_idwt53_h(&h, &tiledp[(OPJ_SIZE_T)j * w]);
}
} else {
OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
OPJ_UINT32 step_j;
if (rh < num_jobs) {
num_jobs = rh;
}
step_j = (rh / num_jobs);
for (j = 0; j < num_jobs; j++) {
opj_dwt_decode_h_job_t* job;
job = (opj_dwt_decode_h_job_t*) opj_malloc(sizeof(opj_dwt_decode_h_job_t));
if (!job) {
/* It would be nice to fallback to single thread case, but */
/* unfortunately some jobs may be launched and have modified */
/* tiledp, so it is not practical to recover from that error */
/* FIXME event manager error callback */
opj_thread_pool_wait_completion(tp, 0);
opj_aligned_free(h.mem);
return OPJ_FALSE;
}
job->h = h;
job->rw = rw;
job->w = w;
job->tiledp = tiledp;
job->min_j = j * step_j;
job->max_j = (j + 1U) * step_j; /* this can overflow */
if (j == (num_jobs - 1U)) { /* this will take care of the overflow */
job->max_j = rh;
}
job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
if (!job->h.mem) {
/* FIXME event manager error callback */
opj_thread_pool_wait_completion(tp, 0);
opj_free(job);
opj_aligned_free(h.mem);
return OPJ_FALSE;
}
opj_thread_pool_submit_job(tp, opj_dwt_decode_h_func, job);
}
opj_thread_pool_wait_completion(tp, 0);
}
v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
v.cas = tr->y0 % 2;
if (num_threads <= 1 || rw <= 1) {
for (j = 0; j + PARALLEL_COLS_53 <= rw;
j += PARALLEL_COLS_53) {
opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, PARALLEL_COLS_53);
}
if (j < rw) {
opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, (OPJ_INT32)(rw - j));
}
} else {
OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
OPJ_UINT32 step_j;
if (rw < num_jobs) {
num_jobs = rw;
}
step_j = (rw / num_jobs);
for (j = 0; j < num_jobs; j++) {
opj_dwt_decode_v_job_t* job;
job = (opj_dwt_decode_v_job_t*) opj_malloc(sizeof(opj_dwt_decode_v_job_t));
if (!job) {
/* It would be nice to fallback to single thread case, but */
/* unfortunately some jobs may be launched and have modified */
/* tiledp, so it is not practical to recover from that error */
/* FIXME event manager error callback */
opj_thread_pool_wait_completion(tp, 0);
opj_aligned_free(v.mem);
return OPJ_FALSE;
}
job->v = v;
job->rh = rh;
job->w = w;
job->tiledp = tiledp;
job->min_j = j * step_j;
job->max_j = (j + 1U) * step_j; /* this can overflow */
if (j == (num_jobs - 1U)) { /* this will take care of the overflow */
job->max_j = rw;
}
job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
if (!job->v.mem) {
/* FIXME event manager error callback */
opj_thread_pool_wait_completion(tp, 0);
opj_free(job);
opj_aligned_free(v.mem);
return OPJ_FALSE;
}
opj_thread_pool_submit_job(tp, opj_dwt_decode_v_func, job);
}
opj_thread_pool_wait_completion(tp, 0);
}
}
opj_aligned_free(h.mem);
return OPJ_TRUE;
}
static void opj_dwt_interleave_partial_h(OPJ_INT32 *dest,
OPJ_INT32 cas,
opj_sparse_array_int32_t* sa,
OPJ_UINT32 sa_line,
OPJ_UINT32 sn,
OPJ_UINT32 win_l_x0,
OPJ_UINT32 win_l_x1,
OPJ_UINT32 win_h_x0,
OPJ_UINT32 win_h_x1)
{
OPJ_BOOL ret;
ret = opj_sparse_array_int32_read(sa,
win_l_x0, sa_line,
win_l_x1, sa_line + 1,
dest + cas + 2 * win_l_x0,
2, 0, OPJ_TRUE);
assert(ret);
ret = opj_sparse_array_int32_read(sa,
sn + win_h_x0, sa_line,
sn + win_h_x1, sa_line + 1,
dest + 1 - cas + 2 * win_h_x0,
2, 0, OPJ_TRUE);
assert(ret);
OPJ_UNUSED(ret);
}
static void opj_dwt_interleave_partial_v(OPJ_INT32 *dest,
OPJ_INT32 cas,
opj_sparse_array_int32_t* sa,
OPJ_UINT32 sa_col,
OPJ_UINT32 nb_cols,
OPJ_UINT32 sn,
OPJ_UINT32 win_l_y0,
OPJ_UINT32 win_l_y1,
OPJ_UINT32 win_h_y0,
OPJ_UINT32 win_h_y1)
{
OPJ_BOOL ret;
ret = opj_sparse_array_int32_read(sa,
sa_col, win_l_y0,
sa_col + nb_cols, win_l_y1,
dest + cas * 4 + 2 * 4 * win_l_y0,
1, 2 * 4, OPJ_TRUE);
assert(ret);
ret = opj_sparse_array_int32_read(sa,
sa_col, sn + win_h_y0,
sa_col + nb_cols, sn + win_h_y1,
dest + (1 - cas) * 4 + 2 * 4 * win_h_y0,
1, 2 * 4, OPJ_TRUE);
assert(ret);
OPJ_UNUSED(ret);
}
static void opj_dwt_decode_partial_1(OPJ_INT32 *a, OPJ_SIZE_T a_count,
OPJ_INT32 dn, OPJ_INT32 sn,
OPJ_INT32 cas,
OPJ_INT32 win_l_x0,
OPJ_INT32 win_l_x1,
OPJ_INT32 win_h_x0,
OPJ_INT32 win_h_x1)
{
OPJ_INT32 i;
if (!cas) {
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
/* Naive version is :
for (i = win_l_x0; i < i_max; i++) {
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
}
for (i = win_h_x0; i < win_h_x1; i++) {
OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
}
but the compiler doesn't manage to unroll it to avoid bound
checking in OPJ_S_ and OPJ_D_ macros
*/
i = win_l_x0;
if (i < win_l_x1) {
OPJ_INT32 i_max;
/* Left-most case */
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
i ++;
i_max = win_l_x1;
if (i_max > dn) {
i_max = dn;
}
for (; i < i_max; i++) {
/* No bound checking */
OPJ_S(i) -= (OPJ_D(i - 1) + OPJ_D(i) + 2) >> 2;
}
for (; i < win_l_x1; i++) {
/* Right-most case */
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
}
}
i = win_h_x0;
if (i < win_h_x1) {
OPJ_INT32 i_max = win_h_x1;
if (i_max >= sn) {
i_max = sn - 1;
}
for (; i < i_max; i++) {
/* No bound checking */
OPJ_D(i) += (OPJ_S(i) + OPJ_S(i + 1)) >> 1;
}
for (; i < win_h_x1; i++) {
/* Right-most case */
OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
}
}
}
} else {
if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */
OPJ_S(0) /= 2;
} else {
for (i = win_l_x0; i < win_l_x1; i++) {
OPJ_D(i) = opj_int_sub_no_overflow(OPJ_D(i),
opj_int_add_no_overflow(opj_int_add_no_overflow(OPJ_SS_(i), OPJ_SS_(i + 1)),
2) >> 2);
}
for (i = win_h_x0; i < win_h_x1; i++) {
OPJ_S(i) = opj_int_add_no_overflow(OPJ_S(i),
opj_int_add_no_overflow(OPJ_DD_(i), OPJ_DD_(i - 1)) >> 1);
}
}
}
}
#define OPJ_S_off(i,off) a[(OPJ_UINT32)(i)*2*4+off]
#define OPJ_D_off(i,off) a[(1+(OPJ_UINT32)(i)*2)*4+off]
#define OPJ_S__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=sn?OPJ_S_off(sn-1,off):OPJ_S_off(i,off)))
#define OPJ_D__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=dn?OPJ_D_off(dn-1,off):OPJ_D_off(i,off)))
#define OPJ_SS__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=dn?OPJ_S_off(dn-1,off):OPJ_S_off(i,off)))
#define OPJ_DD__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=sn?OPJ_D_off(sn-1,off):OPJ_D_off(i,off)))
static void opj_dwt_decode_partial_1_parallel(OPJ_INT32 *a,
OPJ_UINT32 nb_cols,
OPJ_INT32 dn, OPJ_INT32 sn,
OPJ_INT32 cas,
OPJ_INT32 win_l_x0,
OPJ_INT32 win_l_x1,
OPJ_INT32 win_h_x0,
OPJ_INT32 win_h_x1)
{
OPJ_INT32 i;
OPJ_UINT32 off;
(void)nb_cols;
if (!cas) {
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
/* Naive version is :
for (i = win_l_x0; i < i_max; i++) {
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
}
for (i = win_h_x0; i < win_h_x1; i++) {
OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
}
but the compiler doesn't manage to unroll it to avoid bound
checking in OPJ_S_ and OPJ_D_ macros
*/
i = win_l_x0;
if (i < win_l_x1) {
OPJ_INT32 i_max;
/* Left-most case */
for (off = 0; off < 4; off++) {
OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2;
}
i ++;
i_max = win_l_x1;
if (i_max > dn) {
i_max = dn;
}
#ifdef __SSE2__
if (i + 1 < i_max) {
const __m128i two = _mm_set1_epi32(2);
__m128i Dm1 = _mm_load_si128((__m128i * const)(a + 4 + (i - 1) * 8));
for (; i + 1 < i_max; i += 2) {
/* No bound checking */
__m128i S = _mm_load_si128((__m128i * const)(a + i * 8));
__m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8));
__m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8));
__m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8));
S = _mm_sub_epi32(S,
_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(Dm1, D), two), 2));
S1 = _mm_sub_epi32(S1,
_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(D, D1), two), 2));
_mm_store_si128((__m128i*)(a + i * 8), S);
_mm_store_si128((__m128i*)(a + (i + 1) * 8), S1);
Dm1 = D1;
}
}
#endif
for (; i < i_max; i++) {
/* No bound checking */
for (off = 0; off < 4; off++) {
OPJ_S_off(i, off) -= (OPJ_D_off(i - 1, off) + OPJ_D_off(i, off) + 2) >> 2;
}
}
for (; i < win_l_x1; i++) {
/* Right-most case */
for (off = 0; off < 4; off++) {
OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2;
}
}
}
i = win_h_x0;
if (i < win_h_x1) {
OPJ_INT32 i_max = win_h_x1;
if (i_max >= sn) {
i_max = sn - 1;
}
#ifdef __SSE2__
if (i + 1 < i_max) {
__m128i S = _mm_load_si128((__m128i * const)(a + i * 8));
for (; i + 1 < i_max; i += 2) {
/* No bound checking */
__m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8));
__m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8));
__m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8));
__m128i S2 = _mm_load_si128((__m128i * const)(a + (i + 2) * 8));
D = _mm_add_epi32(D, _mm_srai_epi32(_mm_add_epi32(S, S1), 1));
D1 = _mm_add_epi32(D1, _mm_srai_epi32(_mm_add_epi32(S1, S2), 1));
_mm_store_si128((__m128i*)(a + 4 + i * 8), D);
_mm_store_si128((__m128i*)(a + 4 + (i + 1) * 8), D1);
S = S2;
}
}
#endif
for (; i < i_max; i++) {
/* No bound checking */
for (off = 0; off < 4; off++) {
OPJ_D_off(i, off) += (OPJ_S_off(i, off) + OPJ_S_off(i + 1, off)) >> 1;
}
}
for (; i < win_h_x1; i++) {
/* Right-most case */
for (off = 0; off < 4; off++) {
OPJ_D_off(i, off) += (OPJ_S__off(i, off) + OPJ_S__off(i + 1, off)) >> 1;
}
}
}
}
} else {
if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */
for (off = 0; off < 4; off++) {
OPJ_S_off(0, off) /= 2;
}
} else {
for (i = win_l_x0; i < win_l_x1; i++) {
for (off = 0; off < 4; off++) {
OPJ_D_off(i, off) = opj_int_sub_no_overflow(
OPJ_D_off(i, off),
opj_int_add_no_overflow(
opj_int_add_no_overflow(OPJ_SS__off(i, off), OPJ_SS__off(i + 1, off)), 2) >> 2);
}
}
for (i = win_h_x0; i < win_h_x1; i++) {
for (off = 0; off < 4; off++) {
OPJ_S_off(i, off) = opj_int_add_no_overflow(
OPJ_S_off(i, off),
opj_int_add_no_overflow(OPJ_DD__off(i, off), OPJ_DD__off(i - 1, off)) >> 1);
}
}
}
}
}
static void opj_dwt_get_band_coordinates(opj_tcd_tilecomp_t* tilec,
OPJ_UINT32 resno,
OPJ_UINT32 bandno,
OPJ_UINT32 tcx0,
OPJ_UINT32 tcy0,
OPJ_UINT32 tcx1,
OPJ_UINT32 tcy1,
OPJ_UINT32* tbx0,
OPJ_UINT32* tby0,
OPJ_UINT32* tbx1,
OPJ_UINT32* tby1)
{
/* Compute number of decomposition for this band. See table F-1 */
OPJ_UINT32 nb = (resno == 0) ?
tilec->numresolutions - 1 :
tilec->numresolutions - resno;
/* Map above tile-based coordinates to sub-band-based coordinates per */
/* equation B-15 of the standard */
OPJ_UINT32 x0b = bandno & 1;
OPJ_UINT32 y0b = bandno >> 1;
if (tbx0) {
*tbx0 = (nb == 0) ? tcx0 :
(tcx0 <= (1U << (nb - 1)) * x0b) ? 0 :
opj_uint_ceildivpow2(tcx0 - (1U << (nb - 1)) * x0b, nb);
}
if (tby0) {
*tby0 = (nb == 0) ? tcy0 :
(tcy0 <= (1U << (nb - 1)) * y0b) ? 0 :
opj_uint_ceildivpow2(tcy0 - (1U << (nb - 1)) * y0b, nb);
}
if (tbx1) {
*tbx1 = (nb == 0) ? tcx1 :
(tcx1 <= (1U << (nb - 1)) * x0b) ? 0 :
opj_uint_ceildivpow2(tcx1 - (1U << (nb - 1)) * x0b, nb);
}
if (tby1) {
*tby1 = (nb == 0) ? tcy1 :
(tcy1 <= (1U << (nb - 1)) * y0b) ? 0 :
opj_uint_ceildivpow2(tcy1 - (1U << (nb - 1)) * y0b, nb);
}
}
static void opj_dwt_segment_grow(OPJ_UINT32 filter_width,
OPJ_UINT32 max_size,
OPJ_UINT32* start,
OPJ_UINT32* end)
{
*start = opj_uint_subs(*start, filter_width);
*end = opj_uint_adds(*end, filter_width);
*end = opj_uint_min(*end, max_size);
}
static opj_sparse_array_int32_t* opj_dwt_init_sparse_array(
opj_tcd_tilecomp_t* tilec,
OPJ_UINT32 numres)
{
opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
OPJ_UINT32 w = (OPJ_UINT32)(tr_max->x1 - tr_max->x0);
OPJ_UINT32 h = (OPJ_UINT32)(tr_max->y1 - tr_max->y0);
OPJ_UINT32 resno, bandno, precno, cblkno;
opj_sparse_array_int32_t* sa = opj_sparse_array_int32_create(
w, h, opj_uint_min(w, 64), opj_uint_min(h, 64));
if (sa == NULL) {
return NULL;
}
for (resno = 0; resno < numres; ++resno) {
opj_tcd_resolution_t* res = &tilec->resolutions[resno];
for (bandno =</